Складання ступенів з різними основами. Ступінь із натуральним показником. Розбір завдань для самостійного вирішення

У попередній статті ми розповіли, що собою представляють одночлени. У цьому матеріалі розберемо, як вирішувати приклади та завдання, у яких вони застосовуються. Тут будуть розглянуті такі дії, як віднімання, додавання, множення, поділ одночленів та зведення їх у ступінь з натуральним показником. Ми покажемо, як визначаються такі операції, позначимо основні правила їх виконання та те, що має вийде в результаті. Усі теоретичні положення, як завжди, будуть проілюстровані прикладами завдань з описами рішень.

Найзручніше працювати зі стандартним записом одночленів, тому всі вирази, які будуть використані у статті, ми наводимо у стандартному вигляді. Якщо вони спочатку задані інакше, рекомендується спочатку привести їх до загальноприйнятої форми.

Правила складання та віднімання одночленів

Найбільш прості дії, які можна проводити з одночленами – це віднімання та додавання. У випадку результатом цих дій буде многочлен (одночлен можливий у окремих випадках).

Коли ми складаємо або віднімаємо одночлени, спочатку записуємо в загальноприйнятій формі відповідну суму і різницю, після чого спрощуємо вираз, що вийшов. Якщо є подібні доданки, їх треба навести, дужки – розкрити. Пояснимо на прикладі.

Приклад 1

Умова:виконайте складання одночленів − 3 · x та 2, 72 · x 3 · y 5 · z .

Рішення

Запишемо суму вихідних виразів. Додамо дужки та поставимо між ними плюс. У нас вийде таке:

(− 3 · x) + (2 , 72 · x 3 · y 5 · z)

Коли ми виконаємо розкриття дужок, вийде - 3 · x + 2, 72 · x 3 · y 5 · z. Це багаточлен, записаний у стандартній формі, який буде результатом складання даних одночленів.

Відповідь:(− 3 · x) + (2, 72 · x 3 · y 5 · z) = − 3 · x + 2, 72 · x 3 · y 5 · z .

Якщо в нас задано три, чотири і більше доданків, ми здійснюємо цю дію так само.

Приклад 2

Умова:проведіть у правильному порядку зазначені дії з багаточленами

3 · a 2 - (- 4 · a · c) + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c

Рішення

Почнемо з розкриття дужок.

3 · a 2 + 4 · a · c + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c

Ми бачимо, що отриманий вираз можна спростити шляхом приведення таких доданків:

3 · a 2 + 4 · a · c + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c = = (3 · a 2 + a 2 - 7 · a 2) + 4 · a · c - 2 2 3 · a · c + 4 9 = = - 3 · a 2 + 1 1 3 · a · c + 4 9

У нас вийшов багаточлен, який і буде результатом цієї дії.

Відповідь: 3 · a 2 - (- 4 · a · c) + a 2 - 7 · a 2 + 4 9 - 2 2 3 · a · c = - 3 · a 2 + 1 1 3 · a · c + 4 9

В принципі, ми можемо виконати додавання та віднімання двох одночленів з деякими обмеженнями так, щоб отримати в результаті одночлен. Для цього потрібно дотриматися деяких умов, що стосуються доданків і віднімаються одночленів. Про те, як це робиться, ми розповімо в окремій статті.

Правила множення одночленів

Дія множення не накладає жодних обмежень на множники. Одночлени, що множаться, не повинні відповідати жодним додатковим умовам, щоб в результаті вийде одночлен.

Щоб виконати множення одночленів, потрібно виконати такі кроки:

  1. Правильно записати твір.
  2. Розкрити дужки в отриманому виразі.
  3. Згрупувати по можливості множники з однаковими змінними та числові множники окремо.
  4. Виконати необхідні дії з числами і застосувати до множників, що залишилися, властивість множення ступенів з однаковими основами.

Подивимося, як це робиться на практиці.

Приклад 3

Умова:виконайте множення одночленів 2 · x 4 · y · z і - 7 16 · t 2 · x 2 · z 11 .

Рішення

Почнемо зі складання твору.

Розкриваємо в ньому дужки та отримуємо наступне:

2 · x 4 · y · z · - 7 16 · t 2 · x 2 · z 11

2 · - 7 16 · t 2 · x 4 · x 2 · y · z 3 · z 11

Все, що нам залишилося зробити, - це помножити числа в перших дужках і застосувати властивість ступенів для других. У результаті отримаємо таке:

2 · - 7 16 · t 2 · x 4 · x 2 · y · z 3 · z 11 = - 7 8 · t 2 · x 4 + 2 · y · z 3 + 11 = = - 7 8 · t 2 · x 6 · y · z 14

Відповідь: 2 · x 4 · y · z · - 7 16 · t 2 · x 2 · z 11 = - 7 8 · t 2 · x 6 · y · z 14 .

Якщо у нас в умові стоять три багаточлени і більше, ми множимо їх за таким самим алгоритмом. Докладніше питання множення одночленів ми розглянемо у межах окремого матеріалу.

Правила зведення одночлена до ступеня

Ми знаємо, що ступенем із натуральним показником називають добуток деякого числа однакових множників. На їх кількість вказує число у показнику. Відповідно до цього визначення, зведення одночлена в ступінь рівнозначне множенню вказаної кількості однакових одночленів. Подивимося, як це робиться.

Приклад 4

Умова:виконайте зведення одночлена − 2 · a · b 4 у ступінь 3 .

Рішення

Ми можемо замінити зведення в ступінь на множення 3 одночленів − 2 · a · b 4 . Запишемо і отримаємо відповідь:

(−2 · a · b 4) 3 = (−2 · a · b 4) · (−2 · a · b 4) · (−2 · a · b 4) = = ((−2) · (− 2) · (−2)) · (a · a · a) · (b 4 · b 4 · b 4) = − 8 · a 3 · b 12

Відповідь:(− 2 · a · b 4) 3 = − 8 · a 3 · b 12 .

А як бути в тому випадку, коли рівень має великий показник? Записувати велику кількість множників незручно. Тоді для вирішення такого завдання нам треба застосувати властивості ступеня, а саме властивість ступеня добутку та властивість ступеня у ступеня.

Вирішимо завдання, яке ми навели вище, вказаним способом.

Приклад 5

Умова:виконайте зведення − 2 · a · b 4 у третій ступінь.

Рішення

Знаючи властивість ступеня, ми можемо перейти до виразу наступного виду:

(−2 · a · b 4) 3 = (−2) 3 · a 3 · (b 4) 3 .

Після цього ми зводимо в ступінь - 2 і застосовуємо властивість ступеня:

(−2) 3 · (a) 3 · (b 4) 3 = − 8 · a 3 · b 4 · 3 = − 8 · a 3 · b 12 .

Відповідь:− 2 · a · b 4 = − 8 · a 3 · b 12 .

Зведенню одночлена в міру ми також присвятили окрему статтю.

Правила поділу одночленів

Остання дія з одночленами, яку ми розберемо в даному матеріалі, – розподіл одночлена на одночлен. В результаті ми повинні отримати раціональний (алгебраїчний) дріб (у деяких випадках можливе одержання одночлена). Відразу уточнимо, що поділ на нульовий одночлен не визначається, оскільки не визначається поділ на 0.

Для виконання поділу нам потрібно записати зазначені одночлени у формі дробу та скоротити його, якщо є така можливість.

Приклад 6

Умова:виконайте поділ одночлена − 9 · x 4 · y 3 · z 7 на − 6 · p 3 · t 5 · x 2 · y 2 .

Рішення

Почнемо із запису одночленів у формі дробу.

9 · x 4 · y 3 · z 7 - 6 · p 3 · t 5 · x 2 · y 2

Цей дріб можна скоротити. Після виконання цієї дії отримаємо:

3 · x 2 · y · z 7 2 · p 3 · t 5

Відповідь:- 9 · x 4 · y 3 · z 7 - 6 · p 3 · t 5 · x 2 · y 2 = 3 · x 2 · y · z 7 2 · p 3 · t 5 .

Умови, за яких в результаті розподілу одночленів ми отримаємо одночлен, наводяться в окремій статті.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Якщо не зважати на восьмий ступінь, що ми тут бачимо? Згадуємо програму 7 класу. Отже, згадали? Це формула скороченого множення, а саме – різниця квадратів! Отримуємо:

Уважно дивимось на знаменник. Він дуже схожий на один із множників чисельника, але що не так? Не той порядок доданків. Якби їх поміняти місцями можна було б застосувати правило.

Але як це зробити? Виявляється дуже легко: тут нам допомагає парний ступінь знаменника.

Магічним чином доданки змінилися місцями. Це «явище» застосовується для будь-якого виразу парною мірою: ми можемо безперешкодно змінювати знаки в дужках.

Але важливо запам'ятати: змінюються усі знаки одночасно!

Повернемося, наприклад:

І знову формула:

Цілимими називаємо натуральні числа, протилежні їм (тобто узяті зі знаком «») та число.

ціле позитивне число, а воно нічим не відрізняється від натурального, все виглядає в точності як у попередньому розділі.

А тепер розглянемо нові випадки. Почнемо з показника, що дорівнює.

Будь-яке число в нульовому ступені дорівнює одиниці:

Як завжди, запитаємо себе: чому це так?

Розглянемо якийсь ступінь із основою. Візьмемо, наприклад, і домножимо на:

Отже, ми помножили число на, і отримали те, що було - . А на яку кількість треба помножити, щоб нічого не змінилося? Правильно, на. Значить.

Можемо зробити те саме вже з довільним числом:

Повторимо правило:

Будь-яке число в нульовому ступені дорівнює одиниці.

Але з багатьох правил є винятки. І тут воно теж є - це число (як основа).

З одного боку, будь-якою мірою повинен дорівнювати - скільки нуль сам на себе не помножуй, все-одно отримаєш нуль, це ясно. Але з іншого боку, як і будь-яке число в нульовому ступені, має дорівнювати. То що з цього правда? Математики вирішили не зв'язуватися і відмовилися зводити нуль у нульовий ступінь. Тобто тепер нам не можна не тільки ділити на нуль, а й зводити його на нульовий ступінь.

Поїхали далі. Крім натуральних чисел та числа до цілих відносяться негативні числа. Щоб зрозуміти, що таке негативний ступінь, дійдемо як минулого разу: домножимо якесь нормальне число на таке ж негативне:

Звідси вже нескладно висловити:

Тепер поширимо отримане правило на довільний ступінь:

Отже, сформулюємо правило:

Число негативною мірою назад такому ж числу позитивно. Але при цьому основа не може бути нульовою:(Бо на ділити не можна).

Підведемо підсумки:

I. Вираз не визначено у разі. Якщо то.

ІІ. Будь-яке число в нульовому ступені дорівнює одиниці: .

ІІІ. Число, не рівне нулю, негативною мірою назад такому ж числу позитивно: .

Завдання для самостійного вирішення:

Ну і, як завжди, приклади для самостійного вирішення:

Розбір завдань для самостійного розв'язання:

Знаю-знаю, числа страшні, але на ЄДІ треба бути готовим до всього! Виріш ці приклади або розбери їх рішення, якщо не зміг вирішити і ти навчишся легко справлятися з ними на іспиті!

Продовжимо розширювати коло чисел, «придатних» як показник ступеня.

Тепер розглянемо раціональні числа.Які числа називаються раціональними?

Відповідь: всі, які можна подати у вигляді дробу, де і - цілі числа, причому.

Щоб зрозуміти, що таке «дрібний ступінь», розглянемо дріб:

Зведемо обидві частини рівняння до ступеня:

Тепер згадаємо правило про «ступінь ступеня»:

Яке число треба звести до ступеня, щоб отримати?

Це формулювання - визначення кореня ступеня.

Нагадаю: коренем -ого ступеня числа () називається число, яке при зведенні до ступеня дорівнює.

Тобто, корінь ступеня - це операція, зворотна зведенню в ступінь: .

Виходить що. Зрозуміло, цей окремий випадок можна розширити: .

Тепер додаємо чисельник: що таке? Відповідь легко отримати за допомогою правила «ступінь ступеня»:

Але чи може бути підстава будь-яким числом? Адже корінь можна отримувати не з усіх чисел.

Жодне!

Згадуємо правило: будь-яке число, зведене парний ступінь - число позитивне. Тобто витягувати коріння парного ступеня з негативних чисел не можна!

А це означає, що не можна такі числа зводити в дрібний ступінь з парним знаменником, тобто вираз не має сенсу.

А що щодо висловлювання?

Але тут постає проблема.

Число можна представити у вигляді інших, скоротливих дробів, наприклад, або.

І виходить, що існує, але не існує, адже це просто два різні записи одного і того ж числа.

Або інший приклад: раз, то можна записати. Але варто нам по-іншому записати показник, і знову отримаємо неприємність: (тобто отримали зовсім інший результат!).

Щоб уникнути подібних парадоксів, розглядаємо тільки позитивна основа ступеня з дробовим показником.

Отже, якщо:

  • - натуральне число;
  • - ціле число;

Приклади:

Ступені з раціональним показником дуже корисні для перетворення виразів з корінням, наприклад:

5 прикладів для тренування

Розбір 5 прикладів для тренування

1. Не забуваємо про звичайні властивості ступенів:

2. . Тут згадуємо, що забули вивчити таблицю ступенів:

адже - це чи. Рішення перебуває автоматично: .

Ну а тепер – найскладніше. Зараз ми розберемо ступінь з ірраціональним показником.

Всі правила і властивості ступенів тут такі самі, як і для ступеня з раціональним показником, за винятком

Адже за визначенням ірраціональні числа - це числа, які неможливо уявити у вигляді дробу, де і - цілі числа (тобто ірраціональні числа - це все дійсні числа, крім раціональних).

При вивченні ступенів з натуральним, цілим і раціональним показником, ми щоразу складали якийсь «образ», «аналогію», або опис більш звичних термінах.

Наприклад, ступінь із натуральним показником - це число, кілька разів помножене саме на себе;

...число в нульовому ступені- це ніби число, помножене саме на себе раз, тобто його ще не почали множити, значить, саме число ще навіть не з'явилося - тому результатом є лише якась «заготівля числа», а саме число;

...ступінь із цілим негативним показником- це ніби стався якийсь «зворотний процес», тобто число не множили саме на себе, а ділили.

Між іншим, у науці часто використовується ступінь із комплексним показником, тобто показник – це навіть не дійсне число.

Але в школі ми про такі складнощі не думаємо, осягнути ці нові поняття тобі буде можливість в інституті.

КУДИ МИ ВПЕВНЕНІ ТИ ПОСТУПИШ! (якщо навчишся вирішувати такі приклади:))

Наприклад:

Виріши самостійно:

Розбір рішень:

1. Почнемо з звичайного нам правила зведення ступеня в ступінь:

Тепер подивися на показник. Нічого він не нагадує тобі? Згадуємо формулу скороченого множення різниця квадратів:

В даному випадку,

Виходить що:

Відповідь: .

2. Наводимо дроби у показниках ступенів до однакового виду: або обидві десяткові, або обидві звичайні. Отримаємо, наприклад:

Відповідь: 16

3. Нічого особливого, застосовуємо звичайні властивості ступенів:

ПРОСУНУТИЙ РІВЕНЬ

Визначення ступеня

Ступенем називається вираз виду: , де:

  • основа ступеня;
  • - показник ступеня.

Ступінь із натуральним показником (n = 1, 2, 3,...)

Звести число в натуральний ступінь n - значить помножити число саме на себе:

Ступінь із цілим показником (0, ±1, ±2,...)

Якщо показником ступеня є ціле позитивнечисло:

Зведення у нульовий ступінь:

Вислів невизначений, т.к., з одного боку, будь-якою мірою - це, з другого - будь-яке число -ою мірою - це.

Якщо показником ступеня є ціле негативнечисло:

(Бо на ділити не можна).

Ще раз про нулі: вираз не визначений у випадку. Якщо то.

Приклади:

Ступінь із раціональним показником

  • - натуральне число;
  • - ціле число;

Приклади:

Властивості ступенів

Щоб простіше було вирішувати завдання, спробуємо зрозуміти: звідки ці властивості взялися? Доведемо їх.

Подивимося: що таке та?

За визначенням:

Отже, у правій частині цього виразу виходить такий твір:

Але за визначенням це ступінь числа з показником, тобто:

Що й потрібно було довести.

приклад : Спростіть вираз

Рішення : .

приклад : Спростіть вираз

Рішення : Важливо помітити, що у нашому правилі обов'язковомають бути однакові підстави. Тому ступеня з основою ми поєднуємо, а залишається окремим множником:

Ще одне важливе зауваження: це правило - тільки для добутку ступенів!

У жодному разі не можна написати, що.

Так само, як і з попередньою властивістю, звернемося до визначення ступеня:

Перегрупуємо цей твір так:

Виходить, що вираз множиться сам на себе раз, тобто, згідно з визначенням, це і є ступінь числа:

По суті, це можна назвати «винесенням показника за дужки». Але ніколи не можна цього робити у сумі: !

Згадаймо формули скороченого множення: скільки разів нам хотілося написати? Але це не так, адже.

Ступінь із негативною основою.

До цього моменту ми обговорювали лише те, яким має бути показникступеня. Але якою має бути підстава? У ступенях з натуральним показником основа може бути будь-яким числом .

І справді, адже ми можемо множити один на одного будь-які числа, будь вони позитивні, негативні, або навіть. Давайте подумаємо, які знаки (« » або « ») матимуть ступеня позитивних та негативних чисел?

Наприклад, позитивним чи негативним буде число? А? ?

З першим усе зрозуміло: хоч би скільки позитивних чисел ми один на одного не множили, результат буде позитивним.

Але з негативними трохи цікавіше. Адже ми пам'ятаємо просте правило з 6 класу: «мінус на мінус дає плюс». Тобто, або. Але якщо ми помножимо на (), вийде -.

І так нескінченно: при кожному наступному множенні знак змінюватиметься. Можна сформулювати такі прості правила:

  1. парнуступінь - число позитивне.
  2. Негативне число, зведене в непарнуступінь - число негативне.
  3. Позитивне число будь-якої міри - число позитивне.
  4. Нуль будь-якою мірою дорівнює нулю.

Визнач самостійно, який знак будуть мати такі вирази:

1. 2. 3.
4. 5. 6.

Впорався? Ось відповіді:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

У перших чотирьох прикладах, сподіваюся, все зрозуміло? Просто дивимося на основу та показник ступеня, і застосовуємо відповідне правило.

У прикладі 5) все теж не так страшно, як здається: адже неважливо, чому рівна підстава - ступінь парний, а значить, результат завжди буде позитивним. Ну, за винятком випадку, коли основа дорівнює нулю. Адже підстава не рівна? Очевидно ні, тому що (бо).

Приклад 6) вже не такий простий. Тут треба дізнатися, що менше: чи? Якщо згадати, що, стає ясно, що, отже, підстава менша за нуль. Тобто застосовуємо правило 2: результат буде негативним.

І знову використовуємо визначення ступеня:

Все як завжди - записуємо визначення ступенів і, ділимо їх один на одного, розбиваємо на пари і отримуємо:

Перш ніж розібрати останнє правило, розв'яжемо кілька прикладів.

Обчисли значення виразів:

Рішення :

Якщо не зважати на восьмий ступінь, що ми тут бачимо? Згадуємо програму 7 класу. Отже, згадали? Це формула скороченого множення, а саме – різниця квадратів!

Отримуємо:

Уважно дивимось на знаменник. Він дуже схожий на один із множників чисельника, але що не так? Не той порядок доданків. Якби їх поміняти місцями можна було б застосувати правило 3. Але як це зробити? Виявляється дуже легко: тут нам допомагає парний ступінь знаменника.

Якщо примножити його на, нічого не зміниться, чи не так? Але тепер виходить таке:

Магічним чином доданки змінилися місцями. Це «явище» застосовується для будь-якого виразу парною мірою: ми можемо безперешкодно змінювати знаки в дужках. Але важливо запам'ятати: змінюються усі знаки одночасно!Не можна замінити, змінивши тільки один неугодний нам мінус!

Повернемося, наприклад:

І знову формула:

Отже, тепер останнє правило:

Як доводитимемо? Звичайно, як завжди: розкриємо поняття ступеня і спростимо:

Ну а тепер розкриємо дужки. Скільки всього вийде букв? раз по множниках - що це нагадує? Це не що інше, як визначення операції множення: всього там виявилося множників Тобто це, за визначенням, ступінь числа з показником:

Приклад:

Ступінь з ірраціональним показником

На додаток до інформації про ступені для середнього рівня, розберемо ступінь з ірраціональним показником. Всі правила та властивості ступенів тут точно такі ж, як і для ступеня з раціональним показником, за винятком - адже за визначенням ірраціональні числа - це числа, які неможливо уявити у вигляді дробу, де і - цілі числа (тобто ірраціональні числа - це усі дійсні числа, крім раціональних).

При вивченні ступенів з натуральним, цілим і раціональним показником, ми щоразу складали якийсь «образ», «аналогію», або опис більш звичних термінах. Наприклад, ступінь із натуральним показником - це число, кілька разів помножене саме на себе; число в нульовому ступені - це ніби число, помножене саме на себе раз, тобто його ще не почали множити, значить, саме число ще навіть не з'явилося - тому результатом є лише якась «заготівля числа», а саме число; ступінь із цілим негативним показником - це ніби стався якийсь «зворотний процес», тобто число не множили саме на себе, а ділили.

Уявити ступінь з ірраціональним показником дуже складно (так само, як складно уявити 4-мірний простір). Це швидше чисто математичний об'єкт, який математики створили, щоб розширити поняття ступеня на весь простір чисел.

Між іншим, у науці часто використовується ступінь із комплексним показником, тобто показник – це навіть не дійсне число. Але в школі ми про такі складнощі не думаємо, осягнути ці нові поняття тобі буде можливість в інституті.

Отже, що ми робимо, якщо бачимо ірраціональний показник ступеня? Усіми силами намагаємося його позбутися!:)

Наприклад:

Виріши самостійно:

1) 2) 3)

Відповіді:

  1. Згадуємо формулу різниця квадратів. Відповідь: .
  2. Наводимо дроби до однакового виду: або обидві десяткові або обидві звичайні. Отримаємо, наприклад: .
  3. Нічого особливого, застосовуємо звичайні властивості ступенів:

КОРОТКИЙ ВИКЛАД РОЗДІЛУ ТА ОСНОВНІ ФОРМУЛИ

ступенемназивається вираз виду: , де:

Ступінь із цілим показником

ступінь, показник якого - натуральне число (тобто ціле і позитивне).

Ступінь із раціональним показником

ступінь, показник якого - негативні та дробові числа.

Ступінь з ірраціональним показником

ступінь, показник якої - нескінченний десятковий дріб або корінь.

Властивості ступенів

Особливості ступенів.

  • Негативне число, зведене в парнуступінь - число позитивне.
  • Негативне число, зведене в непарнуступінь - число негативне.
  • Позитивне число будь-якої міри - число позитивне.
  • Нуль будь-якою мірою дорівнює.
  • Будь-яке число в нульовому ступені дорівнює.

ТЕПЕР ТЕБІ СЛОВО...

Як тобі стаття? Напиши внизу у коментарях сподобалася чи ні.

Розкажи про свій досвід використання властивостей ступенів.

Можливо, у тебе є питання. Або пропозиції.

Напиши коментарі.

І удачі на іспитах!

Як множити ступеня? Які ступені можна перемножити, а які – ні? Як число помножити на ступінь?

В алгебрі знайти добуток ступенів можна у двох випадках:

1) якщо ступеня мають однакові підстави;

2) якщо ступеня мають однакові показники.

При множенні ступенів з однаковими основами треба основу залишити колишньою, а показники - скласти:

При множенні ступенів з однаковими показниками загальний показник можна винести за дужки:

Розглянемо, як множити ступені, на конкретних прикладах.

Одиницю у показнику ступеня не пишуть, але при множенні ступенів - враховують:

При множенні кількість ступенів може бути будь-якою. Слід пам'ятати, що перед буквою знак множення можна не писати:

У виразах зведення у ступінь виконується насамперед.

Якщо потрібно число помножити на ступінь, спочатку виконати зведення в ступінь, а вже потім - множення:

www.algebraclass.ru

Додавання, віднімання, множення і поділ ступенів

Складання та віднімання ступенів

Очевидно, що числа зі ступенями можуть складатися, як інші величини шляхом їхнього складання одне за одним зі своїми знаками.

Так, сума a 3 та b 2 є a 3 + b 2 .
Сума a 3 - b n і h 5 -d 4 є a 3 - b n + h 5 - d 4 .

Коефіцієнти однакових ступенів однакових зміннихможуть складатися або відніматися.

Так, сума 2a 2 та 3a 2 дорівнює 5a 2 .

Це також очевидно, що якщо взяти два квадрати а, або три квадрати а, або п'ять квадратів а.

Але ступеня різних зміннихі різні ступені однакових змінних, повинні складатися їх складанням зі своїми знаками.

Так, сума a 2 та a 3 є сума a 2 + a 3 .

Це очевидно, що квадрат числа a, і куб числа a, не дорівнює подвійному квадрату a, але подвоєному кубу a.

Сума a 3 b n і 3a 5 b 6 є a 3 b n + 3a 5 b 6 .

Відніманняступенів проводиться таким же чином, що і додавання, за винятком того, що знаки віднімаються повинні відповідно бути змінені.

Або:
2a 4 - (-6a 4) = 8a 4
3h 2 b 6 - 4h 2 b 6 = -h 2 b 6
5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

Помноження ступенів

Числа зі ступенями можуть бути помножені, як і інші величини шляхом написання їх одне за одним, зі знаком множення або без нього між ними.

Так, результат множення a3 на b2 дорівнює a3b2 або aaabb.

Або:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в останньому прикладі може бути упорядкований шляхом складання однакових змінних.
Вираз набуде вигляду: a 5 b 5 y 3 .

Порівнюючи кілька чисел (змінних) зі ступенями, ми можемо побачити, що якщо будь-які два з них множаться, то результат - це число (змінна) зі ступенем, що дорівнює суміступенів доданків.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Тут 5 - це ступінь результату множення, що дорівнює 2 + 3, сумі ступенів доданків.

Так, a n a m = a m + n .

Для a n a береться як множник стільки разів, скільки дорівнює ступінь n;

І a m береться як множник стільки разів, скільки дорівнює ступінь m;

Тому, ступеня з однаковими основами можуть бути помножені шляхом складання показників ступенів.

Так, a 2 .a 6 = a 2+6 = a 8 . x 3 .x 2 .x = x 3+2+1 = x 6 .

Або:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

Помножте (x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y).
Відповідь: x 4 - y 4 .
Помножте (x 3 + x - 5) ⋅ (2x 3 + x + 1).

Це правило справедливе і для чисел, показники ступеня яких негативні.

1. Так, a-2.a-3 = a-5. Це можна записати у вигляді (1/aa). (1/aaa) = 1/aaaaa.

2. y-n. y-m = y-n-m.

3. a -n. am = am-n.

Якщо a + b множаться на a - b, результат дорівнюватиме a 2 - b 2: тобто

Результат множення суми чи різниці двох чисел дорівнює сумі чи різниці їх квадратів.

Якщо множиться сума та різниця двох чисел, зведених у квадрат, результат дорівнюватиме сумі або різниці цих чисел в четвертоїступеня.

Так, (a - y). (a + y) = a 2 - y 2 .
(a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4 .
(a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8 .

Розподіл ступенів

Числа зі ступенями можуть бути поділені, як і інші числа, відбираючи від дільника дільника, або розміщенням їх у формі дробу.

Таким чином a 3 b 2 поділений на b 2 , дорівнює a 3 .

Запис a 5 , поділеного на a 3 , виглядає як $\frac $. Але це одно a 2 . У ряді чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
будь-яке число може бути поділено на інше, а показник ступеня дорівнюватиме різниціпоказників ділених чисел.

При розподілі ступенів з однаковою основою їх показники віднімаються..

Так, y3: y2 = y3-2 = y1. Тобто $\frac = y$.

І a n+1:a = n+1-1 = a n . Тобто $ frac = a ^ n $.

Або:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b + y) n-3

Правило також справедливе і для чисел з негативнимизначеннями ступенів.
Результат поділу a-5 на a-3, дорівнює a-2.
Також, $\frac: \frac = \frac .\frac = \frac = \frac $.

h 2:h -1 = h 2+1 = h 3 або $h^2:\frac = h^2.\frac = h^3$

Необхідно дуже добре засвоїти множення та поділ ступенів, оскільки такі операції дуже широко застосовуються в алгебрі.

Приклади розв'язання прикладів з дробами, що містять числа зі ступенями

1. Зменшіть показники ступенів $\frac $ Відповідь: $\frac $.

2. Зменшіть показники ступенів у $\frac$. Відповідь: $\frac$ або 2x.

3. Зменшіть показники ступенів a 2 /a 3 та a -3 /a -4 та приведіть до спільного знаменника.
a 2 .a -4 є a -2 перший чисельник.
a 3 .a -3 є a 0 = 1, другий чисельник.
a 3 .a -4 є a -1 загальний чисельник.
Після спрощення: a -2 /a -1 та 1/a -1 .

4. Зменшіть показники ступенів 2a 4 /5a 3 та 2 /a 4 та приведіть до спільного знаменника.
Відповідь: 2a 3 /5a 7 та 5a 5 /5a 7 або 2a 3 /5a 2 та 5/5a 2 .

5. Помножте (a 3 + b)/b 4 (a — b)/3.

6. Помножте (a 5 + 1)/x 2 (b 2 — 1)/(x + a).

7. Помножте b4/a-2 на h-3/x та an/y-3.

8. Розділіть a4/y3 на a3/y2. Відповідь: a/y.

Властивості ступеня

Нагадуємо, що в даному уроці розуміються властивості ступенівз натуральними показниками та нулем. Ступені з раціональними показниками та їх властивості будуть розглянуті в уроках для 8 класів.

Ступінь з натуральним показником має кілька важливих властивостей, які дозволяють спрощувати обчислення в прикладах зі ступенями.

Властивість №1
Добуток ступенів

При множенні ступенів з однаковими основами основа залишається без змін, а показники ступенів складаються.

a m · a n = a m + n , де "a" - будь-яке число, а "m", "n" - будь-які натуральні числа.

Ця властивість ступенів також діє на твір трьох і більше ступенів.

  • Спростити вираз.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Подати у вигляді ступеня.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Подати у вигляді ступеня.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15
  • Зверніть увагу, що у зазначеній властивості йшлося лише про множення ступенів з однаковими підставами. Воно не відноситься до їх складання.

    Не можна замінювати суму (3 3 + 3 2) на 3 5 . Це зрозуміло, якщо
    порахувати (3 3 + 3 2) = (27 + 9) = 36, а 3 5 = 243

    Властивість №2
    Приватне ступенів

    При розподілі ступенів з однаковими основами основа залишається без змін, а з показника діленого ступеня віднімають показник ступеня дільника.

  • Записати приватне у вигляді ступеня
    (2b) 5: (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Обчислити.

    11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
    приклад. Вирішити рівняння. Використовуємо властивість приватного ступеня.
    3 8: t = 3 4

    Відповідь: t = 3 4 = 81

    Користуючись властивостями № 1 і № 2, можна легко спрощувати вирази та проводити обчислення.

      приклад. Спростити вираз.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

    приклад. Знайти значення виразу, використовуючи властивості ступеня.

    2 11 − 5 = 2 6 = 64

    Зверніть увагу, що у властивості 2 йшлося лише про поділ ступенів з однаковими основами.

    Не можна замінювати різницю (4 3 −4 2) на 4 1 . Це зрозуміло, якщо порахувати (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

    Властивість №3
    Зведення ступеня до ступеня

    При зведенні ступеня ступінь ступеня залишається без зміни, а показники ступенів перемножуються.

    (a n) m = a n · m, де "a" - будь-яке число, а "m", "n" - будь-які натуральні числа.


    Зверніть увагу, що властивість № 4, як і інші властивості ступенів, застосовують у зворотному порядку.

    (a n · b n) = (a · b) n

    Тобто, щоб перемножити ступені з однаковими показниками, можна перемножити підстави, а показник ступеня залишити незмінним.

  • приклад. Обчислити.
    2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
  • приклад. Обчислити.
    0,5 16 · 2 16 = (0,5 · 2) 16 = 1
  • У більш складних прикладах можуть зустрітися випадки, коли множення та розподіл треба виконати над ступенями з різними основами та різними показниками. У цьому випадку радимо чинити так.

    Наприклад, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

    Приклад зведення у ступінь десяткового дробу.

    4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

    Властивості 5
    Ступінь приватного (дробі)

    Щоб звести в ступінь приватне, можна звести в цей ступінь окремо поділений і дільник, і перший результат розділити на другий.

    (a: b) n = a n: b n , де "a", "b" - будь-які раціональні числа, b ≠ 0, n - будь-яке натуральне число.

  • приклад. Подати вираз у вигляді приватного ступенів.
    (5: 3) 12 = 5 12: 3 12
  • Нагадуємо, що приватне можна подати у вигляді дробу. Тому на темі зведення дробу до ступеня ми зупинимося докладніше на наступній сторінці.

    Ступені та коріння

    Операції зі ступенями та корінням. Ступінь із негативним ,

    нульовим та дробовим показником. Про висловлювання, які не мають сенсу.

    Операції зі ступенями.

    1. При множенні ступенів з однаковою основою їх показники складаються:

    a m · a n = a m + n.

    2. При розподілі ступенів з однаковою основою їх показники віднімаються .

    3. Ступінь добутку двох або кількох співмножників дорівнює добутку ступенів цих співмножників.

    4. Ступінь відношення (дробі) дорівнює відношенню ступенів ділимого (числителя) та дільника (знаменника):

    (a/b) n = a n / b n.

    5. При зведенні ступеня до ступеня їх показники перемножуються:

    Всі наведені вище формули читаються і виконуються в обох напрямках зліва направо і навпаки.

    П р і м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

    Операції з корінням. У всіх наведених нижче формулах символ означає арифметичний корінь(підкорене вираз позитивно).

    1. Корінь із твору кількох співмножників дорівнює добутку коренів із цих співмножників:

    2. Корінь із відношення дорівнює відношенню коренів ділимого та дільника:

    3. При зведенні кореня до ступеня достатньо звести в цей ступінь підкорене число:

    4. Якщо збільшити ступінь кореня в m разів і одночасно звести в m - ступінь підкорене число, то значення кореня не зміниться:

    5. Якщо зменшити ступінь кореня в m разів і одночасно отримати корінь m -ого ступеня з підкореного числа, то значення кореня не зміниться:


    Розширення поняття ступеня. Досі ми розглядали ступені лише з натуральним показником; але дії зі ступенями та корінням можуть призводити також до негативним, нульовимі дробовимпоказниками. Всі ці показники ступенів потребують додаткового визначення.

    Ступінь із негативним показником. Ступінь деякого числа з негативним (цілим) показником визначається як одиниця, поділена на ступінь того ж числа з показником, що дорівнює абсолютній величині негативного показника:

    Тепер формула a m : a n = a m - nможе бути використана не тільки при mбільше, ніж n, але і при mменшим, ніж n .

    П р і м е р. a 4: a 7 = a 4 — 7 = a — 3 .

    Якщо ми хочемо, щоб формула a m : a n = a mnбула справедлива за m = n, нам потрібне визначення нульового ступеня.

    Ступінь із нульовим показником. Ступінь будь-якого ненульового числа з нульовим показником дорівнює 1.

    Приміри. 2 0 = 1, ( 5) 0 = 1, ( 3 / 5) 0 = 1.

    Ступінь із дробовим показником. Для того, щоб звести дійсне число а в ступінь m / n, потрібно витягти корінь n-го ступеня з m-го ступеня цього числа а:

    Про висловлювання, які не мають сенсу. Є кілька таких виразів.

    де a ≠ 0 , не існує.

    Справді, якщо припустити, що x- деяке число, то відповідно до визначення операції поділу маємо: a = 0· x, Тобто. a= 0, що суперечить умові: a ≠ 0

    будь-яке число.

    Справді, якщо припустити, що це вираз дорівнює деякому числу x, то згідно з визначенням операції поділу маємо: 0 = 0 · x. Але ця рівність має місце при будь-якому числі x, що й потрібно було довести.

    0 0 — будь-яке число.

    Розв'язаємо три основні випадки:

    1) x = 0 це значення не задовольняє даному рівнянню

    2) при x> 0 отримуємо: x/x= 1, тобто. 1 = 1, звідки слід,

    що x- Будь-яке число; але беручи до уваги, що в

    нашому випадку x> 0 , відповіддю є x > 0 ;

    Правила множення ступенів з різною основою

    СТУПЕНЬ З РАЦІОНАЛЬНИМ ПОКАЗНИКОМ,

    СТІПОВА ФУНКЦІЯ IV

    § 69. Множення та поділ ступенів з однаковими підставами

    Теорема 1.Щоб перемножити ступеня з однаковими основами, достатньо показники ступенів скласти, а основу залишити тим самим, тобто

    Доведення.За визначенням ступеня

    2 2 2 3 = 2 5 = 32; (-3) (-3) 3 = (-3) 4 = 81.

    Ми розглянули твір двох ступенів. Насправді доведена властивість правильна для будь-якого числа ступенів з однаковими підставами.

    Теорема 2.Щоб розділити ступеня з однаковими підставами, коли показник ділимого більший від показника дільника, достатньо з показника ділимого відняти показник дільника, а підставу залишити колишнім, тобто при т > п

    (a =/= 0)

    Доведення.Нагадаємо, що часткою від розподілу одного числа на інше називається число, яке при множенні на дільник дає ділене. Тому довести формулу , де a =/= 0, це все одно, що довести формулу

    Якщо т > п , то число т - п буде натуральним; отже, за теоремою 1

    Теорему 2 доведено.

    Слід звернути увагу, що формула

    доведено нами лише у припущенні, що т > п . Тому з доведеного поки що не можна робити, наприклад, таких висновків:

    До того ж ступеня з негативними показниками нами ще не розглядалися і ми поки що не знаємо, який сенс можна надати виразу. - 2 .

    Теорема 3. Щоб звести ступінь у ступінь, достатньо перемножити показники, залишивши основу колишнім, тобто

    Доведення.Використовуючи визначення ступеня та теорему 1 цього параграфа, отримуємо:

    що й потрібно було довести.

    Наприклад, (2 3) 2 = 2 6 = 64;

    518 (Усно) Визначити х з рівнянь:

    1) 2 2 2 2 3 2 4 2 5 2 6 = 2 x ; 3) 4 2 4 4 4 6 4 8 4 10 = 2 x ;

    2) 3 3 3 3 5 3 7 3 9 = 3 x ; 4) 1 / 5 1 / 25 1 / 125 1 / 625 = 1 / 5 x .

    519. (У с т н о.) Спростити:

    520. (У с т н о.) Спростити:

    521. Дані вирази подати у вигляді ступенів з однаковими підставами:

    1) 32 та 64; 3) 8 5 і 16 3; 5) 4100 і 3250;

    2) -1000 та 100; 4) -27 та -243; 6) 81 75 8 200 та 3 600 4 150 .

    Якщо вам потрібно звести якесь конкретне число на ступінь, можете скористатися . А зараз ми докладніше зупинимося на властивості ступенів.

    Експонентні числавідкривають великі можливості, вони дозволяють нам перетворити множення на додавання, а складати набагато легше, ніж множити.

    Наприклад, нам треба помножити 16 на 64. Добуток від множення цих двох чисел дорівнює 1024. Але 16 – це 4х4, а 64 – це 4х4х4. Тобто 16 на 64 = 4x4x4x4x4, що також дорівнює 1024.

    Число 16 можна також у вигляді 2х2х2х2, а 64 як 2х2х2х2х2х2, і якщо зробити множення, ми знову отримаємо 1024.

    А тепер використовуємо правило. 16=4 2 , чи 2 4 , 64=4 3 , чи 2 6 , до того ж час 1024=6 4 =4 5 , чи 2 10 .

    Отже, наше завдання можна записати по-іншому: 4 2 х4 3 =4 5 або 2 4 х2 6 =2 10 і щоразу ми отримуємо 1024.

    Ми можемо вирішити ряд аналогічних прикладів і побачимо, що множення чисел зі ступенями зводиться до складання показників ступеня, або експонент, зрозуміло, за умови, що підстави співмножників рівні.

    Отже, ми можемо, не виробляючи множення, відразу сказати, що 2 4 х2 2 х2 14 =2 20 .

    Це правило справедливе також і при розподілі чисел зі ступенями, але в цьому випадку е кспонента дільника віднімається з експоненти діленого. Отже, 2 5:2 3 =2 2 , що у звичайних числах дорівнює 32:8=4, тобто 2 2 . Підведемо підсумки:

    a m x a n = a m+n , a m: a n = a m-n де m і n — цілі числа.

    З першого погляду може здатися, що таке множення та розподіл чисел зі ступенямине дуже зручно, адже спочатку треба уявити число в експоненційній формі. Неважко уявити в такій формі числа 8 і 16, тобто 23 і 24, але як це зробити з числами 7 і 17? Або як чинити в тих випадках, коли число можна подати в експоненційній формі, але підстави експоненційних виразів чисел сильно різняться. Наприклад, 8×9 – це 2 3 х3 2 і в цьому випадку ми не можемо підсумовувати експоненти. Ні 2 5 і ні 3 5 є відповіддю, відповідь також лежить в інтервалі між цими двома числами.

    Тоді чи варто взагалі возитися із цим методом? Безперечно стоїть. Він дає величезні переваги, особливо при складних та трудомістких обчисленнях.

    Нагадуємо, що в даному уроці розуміються властивості ступенівз натуральними показниками та нулем.

    Ступені з раціональними показниками та їх властивості будуть розглянуті в уроках для 8 класів.

    Властивість №1
    Добуток ступенів

    Ступінь з натуральним показником має кілька важливих властивостей, які дозволяють спрощувати обчислення в прикладах зі ступенями.

    Запам'ятайте!

    При множенні ступенів з однаковими основами основа залишається без змін, а показники ступенів складаються.

    Ця властивість ступенів також діє на твір трьох і більше ступенів.

    • a m · a n = a m + n , де "a" - будь-яке число, а "m", "n" - будь-які натуральні числа.
      Спростити вираз.
    • b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
      Подати у вигляді ступеня.
    • b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
      6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17

    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

    Важливо! Зверніть увагу, що у зазначеній властивості йшлося тільки про множення ступенів однаковими підставами

    . Воно не відноситься до їх складання.
    Не можна замінювати суму (3 3 + 3 2) на 3 5 . Це зрозуміло, якщо

    Властивість №2
    Приватне ступенів

    Ступінь з натуральним показником має кілька важливих властивостей, які дозволяють спрощувати обчислення в прикладах зі ступенями.

    порахувати (3 3 + 3 2) = (27 + 9) = 36, а 3 5 = 243

    При розподілі ступенів з однаковими основами основа залишається без змін, а з показника діленого ступеня віднімають показник ступеня дільника.
  • приклад. Вирішити рівняння. Використовуємо властивість приватного ступеня.
    3 8: t = 3 4

    T = 3 8 − 4

    Відповідь: t = 3 4 = 81
  • Користуючись властивостями № 1 і № 2, можна легко спрощувати вирази та проводити обчислення.

    • приклад. Спростити вираз.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5
    • приклад. Знайти значення виразу, використовуючи властивості ступеня.
      = = = 2 9 + 2
      2 5
      = 2 11
      2 5
      = 2 11 − 5 = 2 6 = 64

      (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

      Зверніть увагу, що у властивості 2 йшлося лише про поділ ступенів з однаковими основами.

      Не можна замінювати різницю (4 3 −4 2) на 4 1 . Це зрозуміло, якщо порахувати (4 3 −4 2) = (64 − 16) = 48 а 4 1 = 4

      Будьте уважні!

      Властивість №3
      Зведення ступеня до ступеня

      Ступінь з натуральним показником має кілька важливих властивостей, які дозволяють спрощувати обчислення в прикладах зі ступенями.

      При зведенні ступеня ступінь ступеня залишається без зміни, а показники ступенів перемножуються.

      (a n) m = a n · m , де "a" - будь-яке число, а "m", "n" - будь-які натуральні числа.


      Властивості 4
      Ступінь твору

      Ступінь з натуральним показником має кілька важливих властивостей, які дозволяють спрощувати обчислення в прикладах зі ступенями.

      При зведенні у ступінь твору кожен із множників зводиться у ступінь. Потім одержані результати перемножуються.

      (a · b) n = a n · b n , де "a", "b" - будь-які раціональні числа; "n" - будь-яке натуральне число.

      • приклад 1.
        (6 · a 2 · b 3 · c) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
      • приклад 2.
        (−x 2 · y) 6 = ((−1) 6 · x 2 · 6 · y 1 · 6) = x 12 · y 6

      (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

      Зверніть увагу, що властивість № 4, як і інші властивості ступенів, застосовують у зворотному порядку.

      (a n · b n) = (a · b) n

      Тобто, щоб перемножити ступені з однаковими показниками, можна перемножити підстави, а показник ступеня залишити незмінним.

      • приклад. Обчислити.
        2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
      • приклад. Обчислити.
        0,5 16 · 2 16 = (0,5 · 2) 16 = 1

      У більш складних прикладах можуть зустрітися випадки, коли множення та розподіл треба виконати над ступенями з різними основами та різними показниками.

      У цьому випадку радимо чинити так. Наприклад,

      Приклад зведення у ступінь десяткового дробу.

      4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

      4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4
      Властивості 5

      Ступінь з натуральним показником має кілька важливих властивостей, які дозволяють спрощувати обчислення в прикладах зі ступенями.

      Ступінь приватного (дробі)

      Щоб звести в ступінь приватне, можна звести в цей ступінь окремо поділений і дільник, і перший результат розділити на другий.

      • (a: b) n = a n: b n , де "a", "b" - будь-які раціональні числа, b ≠ 0, n - будь-яке натуральне число.
        (5: 3) 12 = 5 12: 3 12

      приклад. Подати вираз у вигляді приватного ступенів.