Як вважається дискримінант. Рівняння дискримінанта з математики. Зв'язок між корінням та коефіцієнтами квадратного рівняння

Серед усього курсу шкільної програми алгебри однією з найбільших тем є тема про квадратні рівняння. При цьому під квадратним рівнянням розуміється рівняння виду ax 2 + bx + c = 0 де a ≠ 0 (читається: а помножити на ікс у квадраті плюс бе ікс плюс це дорівнює нулю, де а нерівно нулю). При цьому основне місце займають формули знаходження дискримінанта. квадратного рівняннязазначеного виду, під яким розуміється вираз, що дозволяє визначити наявність чи відсутність коренів у квадратного рівняння, і навіть їх кількість (за наявності).

Формула (рівняння) дискримінанта квадратного рівняння

Загальноприйнята формула дискримінанта квадратного рівняння має такий вигляд: D = b 2 – 4ac. Обчислюючи дискримінант за зазначеною формулою, можна визначити наявність і кількість коренів у квадратного рівняння, а й вибрати спосіб знаходження цих коренів, яких існує кілька залежно від типу квадратного рівняння.

Що означає якщо дискримінант дорівнює нулю \ Формула коренів квадратного рівняння якщо дискримінант дорівнює нулю

Дискримінант, як випливає з формули, позначається латинською літерою D. У разі коли дискримінант дорівнює нулю, слід зробити висновок, що квадратне рівняння виду ax 2 + bx + c = 0, де a ≠ 0, має тільки один корінь, який обчислюється по спрощеною формулою. Дана формула застосовується тільки за нульового дискримінанта і виглядає наступним чином: x = –b/2a, де х – корінь квадратного рівняння, b та а – відповідні змінні квадратного рівняння. Для знаходження кореня квадратного рівняння необхідно негативне значення змінної b розділити подвоєне значення змінної а. Отриманий вираз буде розв'язанням квадратного рівняння.

Розв'язання квадратного рівняння через дискримінант

Якщо при обчисленні дискримінанта за вищенаведеною формулою виходить позитивне значення (D більше за нуль), то квадратне рівняння має два корені, які обчислюються за такими формулами: x 1 = (–b + vD)/2a, x 2 = (–b – vD) /2a. Найчастіше, дискримінант окремо не обчислюється, а значення D, з якого витягується корінь, просто підставляється підкорене вираз у вигляді формули дискримінанта. Якщо змінна b має парне значення, то для обчислення коренів квадратного рівняння виду ax 2 + bx + c = 0 де a ≠ 0 можна також використовувати наступні формули: x 1 = (–k + v(k2 – ac))/a , x 2 = (-k + v (k2 - ac)) / a, де k = b/2.

У деяких випадках для практичного розв'язання квадратних рівнянь можна використовувати Теорему Вієта, яка свідчить, що для суми коренів квадратного рівняння виду x 2 + px + q = 0 буде справедливе значення x 1 + x 2 = –p, а добутку коренів зазначеного рівняння – вираз x 1 x x 2 = q.

Чи може дискримінант бути меншим за нуль

При обчисленні значення дискримінанта можна зіткнутися з ситуацією, яка не підпадає під жодний з описаних випадків – коли дискримінант має негативне значення (тобто менше нуля). У цьому випадку прийнято вважати, що квадратне рівняння виду ax 2 + bx + c = 0, де a ≠ 0, дійсних коренів не має, отже, його рішення обмежуватиметься обчисленням дискримінанта, а наведені вище формули коренів квадратного рівняння в даному випадку застосовуватися не будуть. При цьому у відповіді до квадратного рівняння записується, що рівняння дійсних коренів не має.

Пояснювальне відео:

Нагадуємо, що повне квадратне рівняння, це рівняння виду:

Вирішення повних квадратних рівнянь трохи складніше (зовсім трохи), ніж наведених.

Запам'ятай, будь-яке квадратне рівняння можна вирішити за допомогою дискримінанту!

Навіть неповне.

Інші способи допоможуть зробити це швидше, але якщо у тебе виникають проблеми з квадратними рівняннями, спершу освойте рішення за допомогою дискримінанта.

1. Розв'язання квадратних рівнянь за допомогою дискримінанта.

Рішення квадратних рівнянь у цей спосіб дуже просте, головне запам'ятати послідовність дій і кілька формул.

Якщо, то рівняння має 2 корені. Потрібно звернути увагу на крок 2.

Дискримінант D вказує нам кількість коренів рівняння.

  • Якщо, то формула на кроці скоротиться до. Таким чином, рівняння матиме всього корінь.
  • Якщо, то ми не зможемо витягти коріння з дискримінанта на кроці. Це свідчить про те, що рівняння немає коренів.

Звернемося до геометричному змістуквадратного рівняння.

Графік функції є параболою:

Повернемося до наших рівнянь та розглянемо кілька прикладів.

Приклад 9

Розв'яжіть рівняння

Крок 1пропускаємо.

Крок 2

Знаходимо дискримінант:

А отже рівняння має два корені.

Крок 3

Відповідь:

Приклад 10

Розв'яжіть рівняння

Рівняння представлене у стандартному вигляді, тому Крок 1пропускаємо.

Крок 2

Знаходимо дискримінант:

Отже, рівняння має один корінь.

Відповідь:

Приклад 11

Розв'яжіть рівняння

Рівняння представлене у стандартному вигляді, тому Крок 1пропускаємо.

Крок 2

Знаходимо дискримінант:

Отже ми не зможемо витягти коріння з дискримінанта. Коренів рівняння немає.

Тепер знаємо, як правильно записувати такі відповіді.

Відповідь:Коренів немає

2. Розв'язання квадратних рівнянь за допомогою теореми Вієта

Якщо ти пам'ятаєш, тобто такий тип рівнянь, які називаються наведеними (коли коефіцієнт дорівнює):

Такі рівняння дуже просто вирішувати, використовуючи теорему Вієта:

Сума коренів наведеногоквадратного рівняння дорівнює, а добуток коріння дорівнює.

Потрібно лише підібрати таку пару чисел, добуток яких дорівнює вільному члену рівняння, а сума - другому коефіцієнту, взятому зі зворотним знаком.

Приклад 12

Розв'яжіть рівняння

Це рівняння підходить рішення з використанням теореми Виета, т.к. .

Сума коренів рівняння дорівнює, тобто. отримуємо перше рівняння:

А твір одно:

Складемо і вирішимо систему:

  • в. Сума дорівнює;
  • в. Сума дорівнює;
  • в. Сума дорівнює.

і є рішенням системи:

Відповідь: ; .

Приклад 13

Розв'яжіть рівняння

Відповідь:

Приклад 14

Розв'яжіть рівняння

Наведене рівняння, а значить:

Відповідь:

КВАДРАТНІ РІВНЯННЯ. СЕРЕДНІЙ РІВЕНЬ

Що таке квадратне рівняння?

Іншими словами, квадратне рівняння – це рівняння виду, де – невідоме, – деякі числа, причому.

Число називають старшим або першим коефіцієнтомквадратного рівняння, - другим коефіцієнтом, а - вільним членом.

Тому що якщо рівняння відразу стане лінійним, т.к. пропаде.

При цьому і можуть дорівнювати нулю. У цьому стулка рівняння називають неповним.

Якщо ж усі складові на місці, тобто рівняння - повне.

Методи розв'язання неповних квадратних рівнянь

Для початку розберемо методи розв'язків неповних квадратних рівнянь – вони простіші.

Можна виділити тип таких рівнянь:

I. , у цьому рівнянні коефіцієнт та вільний член рівні.

ІІ. , у цьому рівнянні коефіцієнт дорівнює.

ІІІ. , У цьому рівнянні вільний член дорівнює.

Тепер розглянемо рішення кожного із цих підтипів.

Очевидно, що дане рівняння завжди має лише один корінь:

Число, зведене у квадрат, може бути негативним, адже за перемноженні двох негативних чи двох позитивних чисел результатом завжди буде позитивне число. Тому:

якщо, то рівняння немає рішень;

якщо, маємо навчаємо два корені

Ці формули не слід запам'ятовувати. Головне пам'ятати, що не може бути менше.

Приклади розв'язання квадратних рівнянь

Приклад 15

Відповідь:

Ніколи не забувай про коріння із негативним знаком!

Приклад 16

Квадрат числа не може бути негативним, а значить у рівняння

немає коріння.

Щоб коротко записати, що завдання немає рішень, використовуємо значок порожньої множини.

Відповідь:

Приклад 17

Отже, це рівняння має два корені: і.

Відповідь:

Винесемо загальним множник за дужки:

Добуток дорівнює нулю, якщо хоча б один із множників дорівнює нулю. А це означає, що рівняння має рішення, коли:

Отже, це квадратне рівняння має два корені: і.

Приклад:

Розв'яжіть рівняння.

Рішення:

Розкладемо ліву частину рівняння на множники і знайдемо коріння:

Відповідь:

Методи розв'язання повних квадратних рівнянь

1. Дискримінант

Вирішувати квадратні рівняння цим способом легко, головне запам'ятати послідовність дій та пару формул. Запам'ятай будь-яке квадратне рівняння можна вирішити за допомогою дискримінанта! Навіть неповне.

Ти помітив корінь із дискримінанта у формулі для коріння?

Але дискримінант може бути негативним.

Що робити?

Потрібно особливу увагу звернути на крок 2. Дискримінант вказує на кількість коренів рівняння.

  • Якщо, то рівняння має коріння:
  • Якщо, то рівняння має однакові корені, а по суті, один корінь:

    Таке коріння називається дворазовим.

  • Якщо, то корінь із дискримінанта не витягується. Це свідчить про те, що рівняння немає коренів.

Чому можлива різна кількість коренів?

Звернемося до геометричного змісту квадратного рівняння. Графік функції є параболою:

У окремому випадку, яким є квадратне рівняння, .

І це означає, що коріння квадратного рівняння, це точки перетину з віссю абсцис (вісь).

Парабола може взагалі не перетинати вісь або перетинати її в одній (коли вершина параболи лежить на осі) або двох точках.

Крім того, за напрямок гілок параболи відповідає коефіцієнт. Якщо, то гілки параболи спрямовані вгору, а якщо – то вниз.

4 приклади розв'язання квадратних рівнянь

Приклад 18

Відповідь:

Приклад 19

Відповідь: .

Приклад 20

Відповідь:

Приклад 21

Отже, рішень немає.

Відповідь: .

2. Теорема Вієта

Використовувати теорему Вієта дуже легко.

Потрібно лише підібратитаку пару чисел, добуток яких дорівнює вільному члену рівняння, а сума - другому коефіцієнту, взятому зі зворотним знаком.

Важливо пам'ятати, що теорему Вієта можна застосовувати тільки в наведені квадратні рівняння ().

Розглянемо кілька прикладів:

Приклад 22

Розв'яжіть рівняння.

Рішення:

Це рівняння підходить рішення з використанням теореми Виета, т.к. . Інші коефіцієнти: ; .

Сума коренів рівняння дорівнює:

А твір одно:

Підберемо такі пари чисел, добуток яких рівний, і перевіримо, чи дорівнює їх сума:

  • в. Сума дорівнює;
  • в. Сума дорівнює;
  • в. Сума дорівнює.

і є рішенням системи:

Таким чином, і – коріння нашого рівняння.

Відповідь: ; .

Приклад 23

Рішення:

Підберемо такі пари чисел, які у творі дають, а потім перевіримо, чи дорівнює їхня сума:

та: у сумі дають.

та: у сумі дають. Щоб отримати, досить просто поміняти знаки передбачуваного коріння: і твір.

Відповідь:

Приклад 24

Рішення:

Вільний член рівняння негативний, отже, і твір коренів - негативне число. Це можливо тільки якщо один із коренів негативний, а інший - позитивний. Тому сума коренів дорівнює різниці їх модулів.

Підберемо такі пари чисел, які у творі дають, і різниця яких дорівнює:

і: їхня різниця дорівнює - не підходить;

та: - не підходить;

та: - не підходить;

та: - підходить. Залишається лише згадати, що одне з коренів негативне. Так як їх сума повинна дорівнювати, то негативним має бути менший за модулем корінь: . Перевіряємо:

Відповідь:

Приклад 25

Розв'яжіть рівняння.

Рішення:

Наведене рівняння, а значить:

Вільний член негативний, отже, і твір коренів негативно. А це можливо тільки тоді, коли один корінь рівняння негативний, а інший позитивний.

Підберемо такі пари чисел, добуток яких дорівнює, а потім визначимо, яке коріння має мати негативний знак:

Очевидно, що під першу умову підходять тільки коріння та:

Відповідь:

Приклад 26

Розв'яжіть рівняння.

Рішення:

Наведене рівняння, а значить:

Сума коренів негативна, а це означає що, принаймні, один із коренів негативний. Але оскільки їхній твір позитивний, то значить обидва корені зі знаком мінус.

Підберемо такі пари чисел, добуток яких дорівнює:

Очевидно, що корінням є числа в.

Відповідь:

Погодься, це дуже зручно – вигадувати коріння усно, замість того, щоб вважати цей неприємний дискримінант.

Намагайся використовувати теорему Вієта якнайчастіше!

Але теорема Вієта потрібна для того, щоб полегшити та прискорити знаходження коріння.

Щоб тобі було вигідно її використати, ти маєш довести дії до автоматизму. А для цього вирішуй ще п'ять прикладів.

Але не шахрай: дискримінант використовувати не можна! Тільки теорему Вієта!

5 прикладів на теорему Вієта для самостійної роботи

Приклад 27

Завдання 1. ((x)^(2))-8x+12=0

За теоремою Вієта:

Як завжди, починаємо підбір з твору:

Не підходить, оскільки сума;

: сума - те що треба

Відповідь: ; .

Приклад 28

Завдання 2.

І знову наша улюблена теорема Вієта: у сумі має вийти, а твір рівний.

Але оскільки має бути не, а, міняємо знаки коріння: і (у сумі).

Відповідь: ; .

Приклад 29

Завдання 3.

Хм… А де тут що?

Потрібно перенести всі складові в одну частину:

Сума коренів дорівнює, твір.

Так стоп! Рівняння не наведене.

Але теорема Вієта застосовна лише у наведених рівняннях.

Тож спочатку потрібно рівняння навести.

Якщо навести не виходить, кидай цю витівку і вирішуй іншим способом (наприклад, через дискримінант).

Нагадаю, що навести квадратне рівняння - значить зробити старший коефіцієнт рівним:

Тоді сума коренів дорівнює, а твір.

Тут підібрати простіше простого: адже - просте число (вибач за тавтологію).

Відповідь: ; .

Приклад 30

Завдання 4.

Вільний член негативний.

Що у цьому особливого?

А те, що коріння буде різних знаків.

І тепер під час підбору перевіряємо не суму коренів, а різницю їх модулів: ця різниця дорівнює, а твір.

Отже, коріння рівні і, але один із них з мінусом.

Теорема Вієта говорить нам, що сума коренів дорівнює другому коефіцієнту зі зворотним знаком, тобто.

Значить, мінус буде у меншого кореня: і оскільки.

Відповідь: ; .

Приклад 31

Завдання 5.

Що потрібно зробити насамперед?

Правильно, навести рівняння:

Знову: підбираємо множники числа, і їх різниця повинна дорівнювати:

Коріння рівні і, але одне з них з мінусом. Який? Їхня сума має дорівнювати, отже, з мінусом буде більший корінь.

Відповідь: ; .

Підведемо підсумок

  1. Теорема Вієта використовується лише у наведених квадратних рівняннях.
  2. Використовуючи теорему Вієта, можна знайти коріння підбором, усно.
  3. Якщо рівняння не наводиться або не знайшлося жодної відповідної пари множників вільного члена, значить цілих коренів немає, і потрібно вирішувати іншим способом (наприклад, через дискримінант).

3. Метод виділення повного квадрата

Якщо всі доданки, що містять невідоме, подати у вигляді доданків із формул скороченого множення - квадрата суми або різниці - то після заміни змінних можна уявити рівняння у вигляді неповного квадратного рівняння типу.

Наприклад:

Приклад 32

Розв'яжіть рівняння: .

Рішення:

Відповідь:

Приклад 33

Розв'яжіть рівняння: .

Рішення:

Відповідь:

У загальному вигляді перетворення виглядатиме так:

Звідси випливає: .

Нічого не нагадує?

Це ж дискримінант! Саме так, формулу дискримінанта так і отримали.

КВАДРАТНІ РІВНЯННЯ. КОРОТКО ПРО ГОЛОВНЕ

Квадратне рівняння- це рівняння виду, де невідоме, - коефіцієнти квадратного рівняння, - вільний член.

Повне квадратне рівняння- Рівняння, в якому коефіцієнти, не дорівнюють нулю.

Наведене квадратне рівняння- Рівняння, у якому коефіцієнт, тобто: .

Неповне квадратне рівняння- Рівняння, в якому коефіцієнт або вільний член з рівні нулю:

  • якщо коефіцієнт, рівняння має вигляд:
  • якщо вільний член, рівняння має вигляд:
  • якщо і, рівняння має вигляд: .

1. Алгоритм розв'язання неповних квадратних рівнянь

1.1. Неповне квадратне рівняння виду, де:

1) Виразимо невідоме: ,

2) Перевіряємо знак виразу:

  • якщо, то рівняння немає рішень,
  • якщо, то рівняння має два корені.

1.2. Неповне квадратне рівняння виду, де:

1) Винесемо загальним множник за дужки: ,

2) Добуток дорівнює нулю, якщо хоча б один із множників дорівнює нулю. Отже, рівняння має два корені:

1.3. Неповне квадратне рівняння виду, де:

Дане рівняння має тільки один корінь: .

2. Алгоритм розв'язання повних квадратних рівнянь виду де

2.1. Рішення за допомогою дискримінанта

1) Наведемо рівняння до стандартного вигляду: ,

2) Обчислимо дискримінант за формулою: , який вказує на кількість коренів рівняння:

3) Знайдемо коріння рівняння:

  • якщо, то рівняння має корені, що знаходяться за формулою:
  • якщо, то рівняння має корінь, що знаходиться за формулою:
  • якщо, то рівняння не має коріння.

2.2. Рішення за допомогою теореми Вієта

Сума коренів наведеного квадратного рівняння (рівняння виду, де) дорівнює, а добуток коренів дорівнює, тобто. , а.

2.3. Рішення методом виділення повного квадрата

», тобто рівняння першого ступеня. У цьому уроці ми розберемо, що називають квадратним рівняннямта як його вирішувати.

Що називають квадратним рівнянням

Важливо!

Ступінь рівняння визначають найбільшою мірою, в якій стоїть невідоме.

Якщо максимальний ступінь, у якому стоїть невідоме — «2», то перед вами квадратне рівняння.

Приклади квадратних рівнянь

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25 x = 0
  • x 2 − 8 = 0

Важливо!

Загальний вигляд квадратного рівняння виглядає так:

A x 2 + b x + c = 0
  • "a", "b" і "c" - задані числа.
  • "a" - перший або старший коефіцієнт;
  • "b" - другий коефіцієнт;

"c" - вільний член.

Щоб знайти «a», «b» та «c» потрібно порівняти своє рівняння із загальним виглядом квадратного рівняння «ax 2 + bx + c = 0».

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Давайте потренуємося визначати коефіцієнти «a», «b» та «c» у квадратних рівняннях. Рівняння
  • a = 5
  • b = −14
  • з = 17
  • a = −7
  • b = −13
  • з = 8
1
3
= 0
  • a = −1
  • b = 1
  • з =
    1
    3
x 2 + 0,25 x = 0
  • a = 1
  • b = 0,25
  • з = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • з = −8

Як вирішувати квадратні рівняння

На відміну від лінійних рівнянь для розв'язання квадратних рівнянь використовується спеціальна формула для знаходження коріння.

Запам'ятайте!

Щоб розв'язати квадратне рівняння потрібно:

  • привести квадратне рівняння до загального вигляду"ax 2 + bx + c = 0".
  • Тобто у правій частині має залишитися лише «0»;

використовувати формулу для коріння:

Давайте на прикладі розберемо, як застосовувати формулу для знаходження коріння квадратного рівняння. Вирішимо квадратне рівняння.


X 2 − 3x − 4 = 0 Рівняння x 2 − 3x − 4 = 0 вже приведено до загального вигляду ax 2 + bx + c = 0 і не вимагає додаткових спрощень. Для його вирішення нам достатньо застосувати.

формулу знаходження коріння квадратного рівняння


Визначимо коефіцієнти «a», «b» та «c» для цього рівняння.
Визначимо коефіцієнти «a», «b» та «c» для цього рівняння.
Визначимо коефіцієнти «a», «b» та «c» для цього рівняння.
Визначимо коефіцієнти «a», «b» та «c» для цього рівняння.

x 1; 2 =

З її допомогою вирішується будь-яке квадратне рівняння.
У формулі «x 1;2 = » часто замінюють підкорене вираз

"b 2 - 4ac" на букву "D" і називають дискримінантом. Докладніше поняття дискримінанта у в уроці «Що таке дискримінант ».

Розглянемо інший приклад квадратного рівняння.

x 2 + 9 + x = 7x

У цьому вигляді визначити коефіцієнти «a», «b» і «c» досить складно. Давайте спочатку наведемо рівняння до загального вигляду "ax 2 + bx + c = 0".
X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0

x 2 − 6x + 9 = 0

Тепер можна використати формулу для коріння.
X 1; 2 =
X 1; 2 =
X 1; 2 =
x 1; 2 =

6
2

x =
x = 3

Відповідь: x = 3

Трапляються випадки, коли в квадратних рівняннях немає коріння. Така ситуація виникає, як у формулі під коренем виявляється негативне число.

Формули коріння квадратного рівняння. Розглянуто випадки дійсних, кратних та комплексних коренів. Розкладання на множники квадратного тричлена. Геометрична інтерпретація. Приклади визначення коренів та розкладання на множники.

Зміст Див. також:

Розв'язання квадратних рівнянь онлайн

Основні формули
(1) .
Розглянемо квадратне рівняння:Коріння квадратного рівняння
; .
(1) визначаються за формулами:
.
Ці формули можна поєднати так:
.

Коли коріння квадратного рівняння відоме, то багаточлен другого ступеня можна подати у вигляді добутку співмножників (розкласти на множники):
Далі вважаємо, що дійсні числа. Розглянемо:
.
дискримінант квадратного рівняння
; .
Тоді розкладання квадратного тричлена на множники має вигляд:
.
Якщо дискримінант дорівнює нулю, то квадратне рівняння (1) має два кратні (рівні) дійсні корені:
.
Розкладання на множники:
.
Якщо дискримінант негативний, то квадратне рівняння (1) має два комплексно пов'язані корені:
;
.
Тут - уявна одиниця, ;
і - дійсна та уявна частини коренів:
; .
Тоді

.

Графічна інтерпретація

Якщо збудувати графік функції
,
який є параболою, то точки перетину графіка з віссю будуть корінням рівняння
.
При , графік перетинає вісь абсцис (вісь) у двох точках ().
При , графік стосується осі абсцис в одній точці ().
При , графік не перетинає вісь абсцис ().

Корисні формули, пов'язані з квадратним рівнянням

(f.1) ;
(f.2) ;
(f.3) .

Висновок формули для коріння квадратного рівняння

Виконуємо перетворення та застосовуємо формули (f.1) та (f.3):




,
де
; .

Отже, ми отримали формулу для багаточлена другого ступеня у вигляді:
.
Звідси видно, що рівняння

виконується при
та .
Тобто і є корінням квадратного рівняння
.

Приклади визначення коренів квадратного рівняння

Приклад 1


(1.1) .


.
Порівнюючи з нашим рівнянням (1.1), знаходимо значення коефіцієнтів:
.
Знаходимо дискримінант:
.
Оскільки дискримінант позитивний, то рівняння має два дійсні корені:
;
;
.

Звідси отримуємо розкладання квадратного тричлена на множники:

.

Графік функції y = 2 x 2 + 7 x + 3перетинає вісь абсцис у двох точках.

Побудуємо графік функції
.
Графік цієї функції параболою. Вона пересіває вісь абсцис (вісь) у двох точках:
та .
Ці точки є корінням вихідного рівняння (1.1).

;
;
.

Приклад 2

Знайти коріння квадратного рівняння:
(2.1) .

Запишемо квадратне рівняння у загальному вигляді:
.
Порівнюючи з вихідним рівнянням (2.1), знаходимо значення коефіцієнтів:
.
Знаходимо дискримінант:
.
Оскільки дискримінант дорівнює нулю, то рівняння має два кратні (рівні) корені:
;
.

Тоді розкладання тричлена на множники має вигляд:
.

Графік функції y = x 2 - 4 x + 4стосується осі абсцис в одній точці.

Побудуємо графік функції
.
Графік цієї функції параболою. Вона стосується осі абсцис (вісь ) в одній точці:
.
Ця точка є коренем вихідного рівняння (2.1). Оскільки цей корінь входить у розкладання на множники двічі:
,
то такий корінь прийнято називати кратним. Тобто вважають, що є два рівні корені:
.

;
.

Приклад 3

Знайти коріння квадратного рівняння:
(3.1) .

Запишемо квадратне рівняння у загальному вигляді:
(1) .
Перепишемо вихідне рівняння (3.1):
.
Порівнюючи з (1), знаходимо значення коефіцієнтів:
.
Знаходимо дискримінант:
.
Дискримінант негативний, .

Тому дійсних коренів немає.
;
;
.

Можна знайти комплексне коріння:


.

Тоді

Побудуємо графік функції
.
Графік цієї функції параболою. Вона не перетинає вісь абсцис (вісь). Тому дійсних коренів немає.

Справжнього коріння немає. Коріння комплексне:
;
;
.

Див. також:

Протягом теми «Рішення рівнянь» матеріал цієї статті познайомить вас із квадратними рівняннями.

Розглянемо все докладно: суть і запис квадратного рівняння, поставимо супутні терміни, розберемо схему розв'язання неповних і повних рівнянь, Познайомимося з формулою коренів і дискримінантом, встановимо зв'язки між корінням і коефіцієнтами, і наведемо наочне рішення практичних прикладів.

Квадратне рівняння, його види

Визначення 1

Квадратне рівняння– це рівняння, записане як a · x 2 + b · x + c = 0, де x- Змінна, a, b і c- Деякі числа, при цьому aнемає нуль.

Часто квадратні рівняння також звуться рівнянь другого ступеня, оскільки по суті квадратне рівняння є алгебраїчне рівняннядругого ступеня.

Наведемо приклад для ілюстрації заданого визначення: 9 · x 2 + 16 · x + 2 = 0; 7, 5 · x 2 + 3, 1 · x + 0, 11 = 0 і т.п. - Це квадратні рівняння.

Визначення 2

Числа a, b і c– це коефіцієнти квадратного рівняння a · x 2 + b · x + c = 0, при цьому коефіцієнт aносить назву першого, або старшого, або коефіцієнта при x 2 b - другого коефіцієнта, або коефіцієнта при x, а cназивають вільним членом.

Наприклад, у квадратному рівнянні 6 · x 2 − 2 · x − 11 = 0старший коефіцієнт дорівнює 6 другий коефіцієнт є − 2 , а вільний член дорівнює − 11 . Звернемо увагу на той факт, що коли коефіцієнти bта/або c є негативними, то використовується коротка формазапису виду 6 · x 2 − 2 · x − 11 = 0, а не 6 · x 2 + (−2) · x + (− 11) = 0.

Уточнимо також такий аспект: якщо коефіцієнти aта/або bрівні 1 або − 1 , то явної участі в записі квадратного рівняння вони можуть не брати, що пояснюється особливостями запису вказаних числових коефіцієнтів. Наприклад, у квадратному рівнянні y 2 − y + 7 = 0старший коефіцієнт дорівнює 1 а другий коефіцієнт є − 1 .

Наведені та ненаведені квадратні рівняння

За значенням першого коефіцієнта квадратні рівняння поділяють на наведені та ненаведені.

Визначення 3

Наведене квадратне рівняння- Це квадратне рівняння, де старший коефіцієнт дорівнює 1. За інших значень старшого коефіцієнта квадратне рівняння є ненаведеним.

Наведемо приклади: квадратні рівняння x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 є наведеними, у кожному з яких старший коефіцієнт дорівнює 1 .

9 · x 2 − x − 2 = 0- ненаведене квадратне рівняння, де перший коефіцієнт відмінний від 1 .

Будь-яке ненаведене квадратне рівняння можна перетворити на наведене рівняння, якщо розділити обидві його частини на перший коефіцієнт (рівносильне перетворення). Перетворене рівняння матиме таке ж коріння, як і задане ненаведене рівняння або не мати коріння зовсім.

Розгляд конкретного прикладу дозволить нам продемонструвати виконання переходу від ненаведеного квадратного рівняння до наведеного.

Приклад 1

Задано рівняння 6 · x 2 + 18 · x − 7 = 0 . Необхідно перетворити вихідне рівняння на наведену форму.

Рішення

Згідно з зазначеною вище схемою розділимо обидві частини вихідного рівняння на старший коефіцієнт 6 . Тоді отримаємо: (6 · x 2 + 18 · x − 7): 3 = 0: 3, і це те саме, що: (6 · x 2) : 3 + (18 · x) : 3 − 7: 3 = 0і далі: (6: 6) · x 2 + (18: 6) · x − 7: 6 = 0 .Звідси: x 2 + 3 · x - 1 1 6 = 0. Таким чином, отримано рівняння, рівносильне заданому.

Відповідь: x 2 + 3 · x - 1 1 6 = 0.

Повні та неповні квадратні рівняння

Звернемося до визначення квадратного рівняння. У ньому ми уточнили, що a ≠ 0. Подібна умова необхідна, щоб рівняння a · x 2 + b · x + c = 0було саме квадратним, оскільки при a = 0воно по суті перетворюється на лінійне рівняння b · x + c = 0.

У разі, коли коефіцієнти bі cрівні нулю (що можливо, як окремо, і спільно), квадратне рівняння зветься неповного.

Визначення 4

Неповне квадратне рівняння– таке квадратне рівняння a · x 2 + b · x + c = 0де хоча б один із коефіцієнтів bі c(або обидва) дорівнює нулю.

Повне квадратне рівняння- Квадратне рівняння, в якому всі числові коефіцієнти не рівні нулю.

Поміркуємо, чому типу квадратних рівнянь дано саме такі назви.

При b = 0 квадратне рівняння набуде вигляду a · x 2 + 0 · x + c = 0, що те саме, що a · x 2 + c = 0. При c = 0квадратне рівняння записано як a · x 2 + b · x + 0 = 0, що рівносильно a · x 2 + b · x = 0. При b = 0і c = 0рівняння набуде вигляду a · x 2 = 0. Рівняння, які ми отримали, відмінні від повного квадратного рівняння тим, що в їх лівих частинах не міститься або доданку зі змінною x, або вільного члена, або обох одночасно. Власне, цей факт і поставив назву такого типу рівнянь – неповна.

Наприклад, x 2 + 3 · x + 4 = 0 і − 7 · x 2 − 2 · x + 1 , 3 = 0 – це повні квадратні рівняння; x 2 = 0, − 5 · x 2 = 0; 11 · x 2 + 2 = 0, − x 2 − 6 · x = 0 – неповні квадратні рівняння.

Розв'язання неповних квадратних рівнянь

Задане вище визначення дозволяє виділити такі види неповних квадратних рівнянь:

  • a · x 2 = 0, такому рівнянню відповідають коефіцієнти b = 0і c = 0;
  • a · x 2 + c = 0 при b = 0;
  • a · x 2 + b · x = 0 при c = 0.

Розглянемо послідовно розв'язання кожного виду неповного квадратного рівняння.

Розв'язання рівняння a x 2 = 0

Як було зазначено вище, такому рівнянню відповідають коефіцієнти bі c, що дорівнює нулю. Рівняння a · x 2 = 0можна перетворити на рівносильне йому рівняння x 2 = 0, яке ми отримаємо, поділивши обидві частини вихідного рівняння на число a, Не рівне нулю. Очевидний факт, що корінь рівняння x 2 = 0це нуль, оскільки 0 2 = 0 . Іншого коріння це рівняння не має, що можна пояснити властивостями ступеня: для будь-якого числа p ,не рівного нулю, вірна нерівність p 2 > 0, з чого випливає, що за p ≠ 0рівність p 2 = 0ніколи не буде досягнуто.

Визначення 5

Таким чином, для неповного квадратного рівняння a · x 2 = 0 існує єдиний корінь x = 0.

Приклад 2

Наприклад вирішимо неповне квадратне рівняння − 3 · x 2 = 0. Йому рівносильне рівняння x 2 = 0, його єдиним коренем є x = 0тоді і вихідне рівняння має єдиний корінь - нуль.

Коротко рішення оформляється так:

− 3 · x 2 = 0, x 2 = 0, x = 0.

Розв'язання рівняння a · x 2 + c = 0

На черзі - розв'язання неповних квадратних рівнянь, де b = 0 c ≠ 0 тобто рівнянь виду a · x 2 + c = 0. Перетворимо це рівняння, перенісши доданок з однієї частини рівняння на іншу, змінивши знак на протилежний і розділивши обидві частини рівняння на число, що не дорівнює нулю:

  • переносимо cу праву частину, що дає рівняння a · x 2 = − c;
  • ділимо обидві частини рівняння на a, Отримуємо в результаті x = - C a.

Наші перетворення є рівносильними, відповідно отримане рівняння також рівносильно вихідному, і цей факт дає можливість робити висновок про коріння рівняння. Від того, які значення aі cзалежить значення виразу - c a: воно може мати знак мінус (припустимо, якщо a = 1і c = 2тоді - c a = - 2 1 = - 2) або знак плюс (наприклад, якщо a = − 2і c = 6, то - c a = - 6 - 2 = 3); воно не дорівнює нулю, оскільки c ≠ 0. Докладніше зупинимося на ситуаціях, коли - c a< 0 и - c a > 0 .

У разі коли - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа pрівність p 2 = - c a може бути вірним.

Все інакше, коли - c a > 0: згадаємо про квадратне коріння, і стане очевидним, що коренем рівняння x 2 = - c a буде число - c a , оскільки - c a 2 = - c a . Неважко зрозуміти, що число - - a - також корінь рівняння x 2 = - a: дійсно, - - a 2 = - c a .

Іншого коріння рівняння не матиме. Ми можемо це продемонструвати, використовуючи метод протилежного. Для початку поставимо позначення знайдених вище коренів як x 1і − x 1. Висловимо припущення, що рівняння x 2 = - a має також корінь x 2, який відрізняється від коріння x 1і − x 1. Ми знаємо, що, підставивши в рівняння замість xйого коріння, перетворимо рівняння на справедливу числову рівність.

Для x 1і − x 1запишемо: x 1 2 = - c a , а для x 2- x 2 2 = - C a. Спираючись на властивості числових рівностей, почленно віднімемо одну правильну рівність з іншої, що дасть нам: x 1 2 − x 2 2 = 0. Використовуємо властивості дій з числами, щоб переписати останню рівність як (x 1 − x 2) · (x 1 + x 2) = 0. Відомо, що добуток двох чисел є нуль тоді і лише тоді, коли хоча б одне із чисел є нулем. Зі сказаного випливає, що x 1 − x 2 = 0та/або x 1 + x 2 = 0, що те саме, x 2 = x 1та/або x 2 = − x 1. Виникла очевидна суперечність, адже спочатку було зумовлено, що корінь рівняння x 2відрізняється від x 1і − x 1. Так, ми довели, що рівняння не має іншого коріння, крім x = - c a і x = - c a .

Резюмуємо всі міркування вище.

Визначення 6

Неповне квадратне рівняння a · x 2 + c = 0рівносильне рівнянню x 2 = - c a , яке:

  • не матиме коріння при - c a< 0 ;
  • матиме два корені x = - c a та x = - - c a при - c a > 0 .

Наведемо приклади розв'язування рівнянь a · x 2 + c = 0.

Приклад 3

Задано квадратне рівняння 9 · x 2 + 7 = 0.Потрібно знайти його рішення.

Рішення

Перенесемо вільний член у праву частину рівняння, тоді рівняння набуде вигляду 9 · x 2 = − 7 .
Розділимо обидві частини отриманого рівняння на 9 прийдемо до x 2 = - 7 9 . У правій частині ми бачимо число зі знаком мінус, що означає: у заданого рівняннянемає коріння. Тоді й вихідне неповне квадратне рівняння 9 · x 2 + 7 = 0не матиме коріння.

Відповідь:рівняння 9 · x 2 + 7 = 0не має коріння.

Приклад 4

Необхідно вирішити рівняння − x 2 + 36 = 0.

Рішення

Перенесемо 36 у праву частину: − x 2 = − 36.
Розділимо обидві частини на − 1 , отримаємо x 2 = 36. У правій частині - позитивне число, звідси можна дійти невтішного висновку, що x = 36 або x = -36.
Виймемо корінь і запишемо остаточний підсумок: неповне квадратне рівняння − x 2 + 36 = 0має два корені x = 6або x = − 6.

Відповідь: x = 6або x = − 6.

Розв'язання рівняння a x 2 + b x = 0

Розберемо третій вид неповних квадратних рівнянь, коли c = 0. Щоб знайти розв'язок неповного квадратного рівняння a · x 2 + b · x = 0, скористаємося методом розкладання на множники Розкладемо на множники багаточлен, який знаходиться в лівій частині рівняння, винісши за дужки загальний множник x. Цей крок дасть можливість перетворити вихідне неповне квадратне рівняння на рівносильне йому x · (a · x + b) = 0. А це рівняння, у свою чергу, рівносильне сукупності рівнянь x = 0і a · x + b = 0. Рівняння a · x + b = 0лінійне, і корінь його: x = − b a.

Визначення 7

Таким чином, неповне квадратне рівняння a · x 2 + b · x = 0матиме два корені x = 0і x = − b a.

Закріпимо матеріал прикладом.

Приклад 5

Необхідно знайти рішення рівняння 2 3 · x 2 - 2 2 7 · x = 0.

Рішення

Винесемо xза дужки та отримаємо рівняння x · 2 3 · x - 2 2 7 = 0 . Це рівняння рівносильне рівнянням x = 0та 2 3 · x - 2 2 7 = 0 . Тепер слід розв'язати отримане лінійне рівняння: 2 3 · x = 2 2 7 x = 2 2 7 2 3 .

Коротко рішення рівняння запишемо так:

2 3 · x 2 - 2 2 7 · x = 0 x · 2 3 · x - 2 2 7 = 0

x = 0 або 2 3 · x - 2 2 7 = 0

x = 0 або x = 3 3 7

Відповідь: x = 0, x = 3 3 7 .

Дискримінант, формула коренів квадратного рівняння

Для знаходження розв'язання квадратних рівнянь існує формула коренів:

Визначення 8

x = - b ± D 2 · a де D = b 2 − 4 · a · c- Так званий дискримінант квадратного рівняння.

Запис x = - b ± D 2 · a по суті означає, що x 1 = - b + D 2 · a x 2 = - b - D 2 · a .

Не зайвим буде розуміти, як було виведено зазначену формулу і як її застосовувати.

Висновок формули коріння квадратного рівняння

Нехай перед нами стоїть завдання розв'язати квадратне рівняння a · x 2 + b · x + c = 0. Здійснимо ряд рівносильних перетворень:

  • розділимо обидві частини рівняння на число a, Відмінне від нуля, отримаємо наведене квадратне рівняння: x 2 + b a · x + c a = 0;
  • виділимо повний квадрат в лівій частині рівняння, що вийшло:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 - b 2 · a 2 + c a = = x + b 2 · a 2 - b 2 · a 2 + c a
    Після цього рівняння набуде вигляду: x + b 2 · a 2 - b 2 · a 2 + c a = 0;
  • тепер можна зробити перенесення двох останніх доданків у праву частину, змінивши знак на протилежний, після чого отримуємо: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • нарешті, перетворимо вираз, записаний у правій частині останньої рівності:
    b 2 · a 2 - c a = b 2 4 · a 2 - c a = b 2 4 · a 2 - 4 · a · c 4 · a 2 = b 2 - 4 · a · c 4 · a 2 .

Таким чином, ми дійшли рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 , рівносильному вихідному рівнянню a · x 2 + b · x + c = 0.

Вирішення подібних рівнянь ми розбирали в попередніх пунктах(Рішення неповних квадратних рівнянь). Вже отриманий досвід дає можливість зробити висновок щодо коренів рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2:

  • при b 2 - 4 · a · c 4 · a 2< 0 уравнение не имеет действительных решений;
  • при b 2 - 4 · a · c 4 · a 2 = 0 рівняння має вигляд x + b 2 · a 2 = 0 тоді x + b 2 · a = 0 .

Звідси очевидний єдиний корінь x = - b 2 · a;

  • при b 2 - 4 · a · c 4 · a 2 > 0 вірним буде: x + b 2 · a = b 2 - 4 · a · c 4 · a 2 або x = b 2 · a - b 2 - 4 · a · c 4 · a 2 , що те саме, що x + - b 2 · a = b 2 - 4 · a · c 4 · a 2 або x = - b 2 · a - b 2 - 4 · a · c 4 · a 2, тобто. рівняння має два корені.

Можливо зробити висновок, що наявність або відсутність коренів рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 (а значить і вихідного рівняння) залежить від знака виразу b 2 - 4 · a · c 4 · a 2, записаного у правій частині. А знак цього виразу задається знаком чисельника, (знаменник 4 · a 2завжди буде позитивний), тобто, знаком виразу b 2 − 4 · a · c. Цьому виразу b 2 − 4 · a · cдано назву - дискримінант квадратного рівняння і визначена як його позначення літера D. Тут можна записати суть дискримінанта - за його значенням і знаком роблять висновок, чи буде квадратне рівняння мати дійсне коріння, і, якщо буде, то яка кількість коренів - один або два.

Повернемося до рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 . Перепишемо його, використовуючи позначення дискримінанта: x + b 2 · a 2 = D 4 · a 2 .

Знову сформулюємо висновки:

Визначення 9

  • при D< 0 рівняння не має дійсних коренів;
  • при D = 0рівняння має єдиний корінь x = - b 2 · a;
  • при D > 0рівняння має два корені: x = - b 2 · a + D 4 · a 2 або x = - b 2 · a - D 4 · a 2 . Це коріння на основі властивості радикалів можна записати у вигляді: x = - b 2 · a + D 2 · a або - b 2 · a - D 2 · a . А коли розкриємо модулі і приведемо дроби до спільного знаменника, отримаємо: x = - b + D 2 · a , x = - b - D 2 · a .

Так, результатом наших міркувань стало виведення формули коріння квадратного рівняння:

x = - b + D 2 · a , x = - b - D 2 · a , дискримінант Dобчислюється за формулою D = b 2 − 4 · a · c.

Дані формули дають можливість при дискримінанті більше нуля визначити обидва дійсні корені. Коли дискримінант дорівнює нулю, застосування обох формул дасть той самий корінь, як єдине рішення квадратного рівняння. У випадку, коли дискримінант негативний, спробувавши використати формулу кореня квадратного рівняння, ми зіткнемося з необхідністю отримати квадратний коріньз негативного числа, що виведе нас за межі дійсних чисел. При негативному дискримінанті у квадратного рівняння не буде дійсних коренів, але можлива пара комплексно пов'язаних коренів, що визначаються тими самими отриманими нами формулами коренів.

Алгоритм розв'язання квадратних рівнянь за формулами коренів

Вирішити квадратне рівняння можливо, відразу задіюючи формулу коренів, але в основному так роблять при необхідності знайти комплексне коріння.

У більшості випадків зазвичай мається на увазі пошук не комплексних, а дійсних коренів квадратного рівняння. Тоді оптимально перед тим, як використовувати формули коренів квадратного рівняння, спочатку визначити дискримінант і переконатися, що він не є негативним (інакше зробимо висновок, що у рівняння немає дійсних коренів), а потім приступити до обчислення значення коренів.

Міркування вище дають можливість сформулювати алгоритм розв'язання квадратного рівняння.

Визначення 10

Щоб розв'язати квадратне рівняння a · x 2 + b · x + c = 0, необхідно:

  • за формулою D = b 2 − 4 · a · cвизначити значення дискримінанта;
  • при D< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • при D = 0 знайти єдиний корінь рівняння за формулою x = - b 2 · a;
  • при D > 0 визначити два дійсних кореня квадратного рівняння за формулою x = - b ± D 2 · a.

Зазначимо, що коли дискримінант є нуль, можна використовувати формулу x = - b ± D 2 · a , вона дасть той же результат, що і формула x = - b 2 · a .

Розглянемо приклади.

Приклади розв'язання квадратних рівнянь

Наведемо рішення прикладів при різних значенняхдискримінанту.

Приклад 6

Необхідно знайти коріння рівняння x 2 + 2 · x − 6 = 0.

Рішення

Запишемо числові коефіцієнти квадратного рівняння: a = 1, b = 2 і c = − 6. Далі діємо алгоритмом, тобто. приступимо до обчислення дискримінанта, для чого підставимо коефіцієнти a, b і cу формулу дискримінанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · (− 6) = 4 + 24 = 28 .

Отже, ми отримали D > 0 , а це означає, що вихідне рівняння матиме два дійсні корені.
Для їхнього знаходження використовуємо формулу кореня x = - b ± D 2 · a і, підставивши відповідні значення, отримаємо: x = - 2 ± 28 2 · 1 . Спростимо отриманий вираз, винісши множник за знак кореня з наступним скороченням дробу:

x = - 2 ± 2 · 7 2

x = - 2 + 2 · 7 2 або x = - 2 - 2 · 7 2

x = - 1 + 7 або x = - 1 - 7

Відповідь: x = - 1 + 7, x = - 1 - 7 .

Приклад 7

Необхідно розв'язати квадратне рівняння − 4 · x 2 + 28 · x − 49 = 0.

Рішення

Визначимо дискримінант: D = 28 2 − 4 · (− 4) · (− 49) = 784 − 784 = 0. При такому значенні дискримінанта вихідне рівняння матиме лише один корінь, який визначається за формулою x = - b 2 · a .

x = - 28 2 · (- 4) x = 3 , 5

Відповідь: x = 3 , 5.

Приклад 8

Необхідно вирішити рівняння 5 · y 2 + 6 · y + 2 = 0

Рішення

Числові коефіцієнти цього рівняння будуть: a = 5 b = 6 і c = 2 . Використовуємо ці значення для знаходження дискримінанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Обчислений дискримінант негативний, таким чином, вихідне квадратне рівняння не має дійсних коренів.

У разі, коли стоїть завдання вказати комплексне коріння, застосуємо формулу коренів, виконуючи дії з комплексними числами:

x = - 6 ± - 4 2 · 5

x = - 6 + 2 · i 10 або x = - 6 - 2 · i 10

x = - 3 5 + 1 5 · i або x = - 3 5 - 1 5 · i.

Відповідь:дійсне коріння відсутнє; комплексні коріння наступні: - 3 5 + 1 5 · i, - 3 5 - 1 5 · i.

У шкільній програмістандартно немає вимоги шукати комплексне коріння, тому, якщо в ході рішення дискримінант визначений як негативний, відразу записується відповідь, що дійсних коренів немає.

Формула коренів для парних других коефіцієнтів

Формула коренів x = - b ± D 2 · a (D = b 2 − 4 · a · c) дає можливість отримати ще одну формулу, більш компактну, що дозволяє знаходити розв'язки квадратних рівнянь з парним коефіцієнтом при x (або з коефіцієнтом виду 2 · n, наприклад, 2 · 3 або 14 · ln 5 = 2 · 7 · ln 5). Покажемо, як виводиться ця формула.

Нехай перед нами стоїть завдання знайти розв'язок квадратного рівняння a · x 2 + 2 · n · x + c = 0 . Діємо за алгоритмом: визначаємо дискримінант D = (2 · n) 2 - 4 · a · c = 4 · n 2 - 4 · a · c = 4 · (n 2 - a · c), а потім використовуємо формулу коренів:

x = - 2 · n ± D 2 · a , x = - 2 · n ± 4 · n 2 - a · c 2 · a , x = - 2 · n ± 2 n 2 - a · c 2 · a , x = - n ± n 2 - a · c a.

Нехай вираз n 2 − a · c буде позначено як D 1 (іноді його позначають D "). Тоді формула коренів квадратного рівняння, що розглядається, з другим коефіцієнтом 2 · n набуде вигляду:

x = - n ± D 1 a , де D 1 = n 2 − a · c.

Легко побачити, що D = 4 · D 1 або D 1 = D 4 . Інакше висловлюючись, D 1 – це чверть дискримінанта. Очевидно, що знак D 1 такий самий, як знак D , а значить знак D 1 може служити індикатором наявності або відсутності коренів квадратного рівняння.

Визначення 11

Таким чином, щоб знайти розв'язок квадратного рівняння з другим коефіцієнтом 2 · n необхідно:

  • знайти D 1 = n 2 − a · c;
  • при D 1< 0 сделать вывод, что действительных корней нет;
  • при D 1 = 0 визначити єдиний корінь рівняння за формулою x = - n a;
  • при D 1 > 0 визначити два дійсних кореня за формулою x = - n ± D 1 a.

Приклад 9

Необхідно розв'язати квадратне рівняння 5 · x 2 − 6 · x − 32 = 0 .

Рішення

Другий коефіцієнт заданого рівняння можемо уявити як 2 · (− 3) . Тоді перепишемо задане квадратне рівняння як 5 · x 2 + 2 · (− 3) · x − 32 = 0 де a = 5 , n = − 3 і c = − 32 .

Обчислимо четверту частину дискримінанта: D 1 = n 2 − a · c = (− 3) 2 − 5 · (− 32) = 9 + 160 = 169 . Отримане значення позитивно, це означає, що рівняння має два дійсні корені. Визначимо їх за відповідною формулою коренів:

x = - n ± D 1 a , x = - - 3 ± 169 5 , x = 3 ± 13 5 ,

x = 3 + 13 5 або x = 3 - 13 5

x = 3 1 5 або x = - 2

Можливо було б зробити обчислення і за звичайною формулою коренів квадратного рівняння, але в такому разі рішення було б більш громіздким.

Відповідь: x = 3 1 5 або x = -2.

Спрощення виду квадратних рівнянь

Іноді є можливість оптимізувати вид вихідного рівняння, що дозволить спростити процес обчислення коренів.

Наприклад, квадратне рівняння 12 · x 2 − 4 · x − 7 = 0 явно зручніше для розв'язання, ніж 1200 · x 2 − 400 · x − 700 = 0 .

Найчастіше спрощення виду квадратного рівняння виробляється процесами множення чи розподілу його обох елементів на деяке число. Наприклад, ми показали спрощену запис рівняння 1200 · x 2 − 400 · x − 700 = 0 , отриману розподілом обох його частин на 100 .

Таке перетворення можливе, коли коефіцієнти квадратного рівняння є взаємно простими числами. Тоді зазвичай здійснюють розподіл обох частин рівняння на найбільший спільний дільник абсолютних величинйого коефіцієнтів.

Як приклад використовуємо квадратне рівняння 12 · x 2 - 42 · x + 48 = 0. Визначимо НОД абсолютних величин його коефіцієнтів: НОД (12 , 42 , 48) = НОД (НОД (12 , 42) , 48) = НОД (6 , 48) = 6 . Зробимо поділ обох частин вихідного квадратного рівняння на 6 і отримаємо рівносильне йому квадратне рівняння 2 x 2 − 7 x + 8 = 0 .

Множенням обох частин квадратного рівняння зазвичай позбавляються дробових коефіцієнтів. У цьому множать найменше загальне кратне знаменників його коефіцієнтів. Наприклад, якщо кожну частину квадратного рівняння 1 6 · x 2 + 2 3 · x - 3 = 0 перемножити з НОК (6 , 3 , 1) = 6 , воно стане записано у простішому вигляді x 2 + 4 · x − 18 = 0.

Насамкінець зазначимо, що майже завжди позбавляються мінуса при першому коефіцієнті квадратного рівняння, змінюючи знаки кожного члена рівняння, що досягається шляхом множення (або поділу) обох частин на − 1 . Наприклад, від квадратного рівняння − 2 · x 2 − 3 · x + 7 = 0 можна перейти до спрощеної його версії 2 · x 2 + 3 · x − 7 = 0 .

Зв'язок між корінням та коефіцієнтами

Вже відома нам формула коренів квадратних рівнянь x = - b ± D 2 · a виражає коріння рівняння через його числові коефіцієнти. Спираючись на цю формулу, ми маємо можливість задати інші залежності між корінням та коефіцієнтами.

Найбільш відомими та застосовними є формули теореми Вієта:

x 1 + x 2 = - a і x 2 = c a .

Зокрема, для наведеного квадратного рівняння сума коренів є другий коефіцієнт із протилежним знаком, а добуток коренів дорівнює вільному члену. Наприклад, у вигляді квадратного рівняння 3 · x 2 − 7 · x + 22 = 0 можна відразу визначити, що його коренів дорівнює 7 3 , а добуток коренів - 22 3 .

Також можна знайти ряд інших зв'язків між корінням та коефіцієнтами квадратного рівняння. Наприклад, сума квадратів коренів квадратного рівняння може бути виражена через коефіцієнти:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 · x 1 · x 2 = - b a 2 - 2 · c a = b 2 a 2 - 2 · c a = b 2 - 2 · a · c a 2 .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter