Знайти прої. Правила обчислення похідних. Геометричний та фізичний зміст похідної

Вирішувати фізичні завдання чи приклади з математики зовсім неможливо без знань про похідну та методи її обчислення. Похідна - одне з найважливіших понять математичного аналізу. Цій фундаментальній темі ми вирішили присвятити сьогоднішню статтю. Що таке похідна, який її фізичний та геометричний змістЯк порахувати похідну функції? Всі ці питання можна поєднати в одне: як зрозуміти похідну?

Геометричний та фізичний зміст похідної

Нехай є функція f(x) , задана в певному інтервалі (a, b) . Точки х і х0 належать до цього інтервалу. При зміні х змінюється сама функція. Зміна аргументу – різниця його значень х-х0 . Ця різниця записується як дельта ікс і називається збільшенням аргументу. Зміною або збільшенням функції називається різниця значень функції у двох точках. Визначення похідної:

Похідна функції у точці – межа відношення збільшення функції у цій точці до збільшення аргументу, коли останнє прагне нулю.

Інакше це можна записати так:

Який сенс у знаходженні такої межі? А ось який:

похідна від функції в точці дорівнює тангенсу кута між віссю OX і щодо графіку функції в даній точці.


Фізичний зміст похідної: похідна шляхи за часом дорівнює швидкості прямолінійного руху.

Дійсно, ще зі шкільних часів всім відомо, що швидкість – це приватна дорога. x=f(t) та часу t . Середня швидкість за деякий проміжок часу:

Щоб дізнатися швидкість руху в момент часу t0 потрібно обчислити межу:

Правило перше: виносимо константу

Константу можна винести за знак похідної. Більше того – це потрібно робити. При вирішенні прикладів математики візьміть за правило - якщо можете спростити вираз, обов'язково спрощуйте .

приклад. Обчислимо похідну:

Правило друге: похідна суми функцій

Похідна суми двох функцій дорівнює сумі похідних цих функцій. Те саме справедливо і для похідної різниці функцій.

Не наводитимемо доказ цієї теореми, а краще розглянемо практичний приклад.

Знайти похідну функції:

Правило третє: похідна робота функцій

Похідна твори двох функцій, що диференціюються, обчислюється за формулою:

Приклад: знайти похідну функції:

Рішення:

Тут важливо сказати про обчислення похідних складних функцій. Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу за незалежною змінною.

У наведеному вище прикладі ми зустрічаємо вираз:

В даному випадку проміжний аргумент - 8х у п'ятому ступені. Для того, щоб обчислити похідну такого виразу, спочатку вважаємо похідну. зовнішньої функціїза проміжним аргументом, а потім множимо на похідну безпосередньо самого проміжного аргументу незалежної змінної.

Правило четверте: похідна приватного двох функцій

Формула для визначення похідної від частки двох функцій:

Ми постаралися розповісти про похідні для чайників з нуля. Ця тема не така проста, як здається, тому попереджаємо: у прикладах часто зустрічаються пастки, так що будьте уважні при обчисленні похідних.

З будь-яким питанням з цієї та інших тем ви можете звернутися до студентського сервісу. За короткий строкми допоможемо вирішити найскладнішу контрольну та розібратися із завданнями, навіть якщо ви ніколи раніше не займалися обчисленням похідних.

Операція відшукання похідної називається диференціюванням.

В результаті вирішення завдань про відшукання похідних у найпростіших (і не дуже простих) функцій визначення похідної як межі відношення прирощення до прирощення аргументу з'явилися таблиця похідних і точно визначені правила диференціювання. Першими на ниві знаходження похідних попрацювали Ісаак Ньютон (1643-1727) та Готфрід Вільгельм Лейбніц (1646-1716).

Тому в наш час, щоб знайти похідну будь-якої функції, не треба обчислювати згадану вище межу відношення збільшення функції до збільшення аргументу, а потрібно лише скористатися таблицею похідних та правилами диференціювання. Для знаходження похідної підходить наступний алгоритм.

Щоб знайти похідну, треба вираз під знаком штриха розібрати на складові прості функціїта визначити, якими діями (твір, сума, приватна)пов'язані ці функції. Далі похідні елементарних функційзнаходимо у таблиці похідних, а формули похідних твори, суми та частки - у правилах диференціювання. Таблиця похідних та правила диференціювання дані після перших двох прикладів.

приклад 1.Знайти похідну функції

Рішення. З правил диференціювання з'ясовуємо, що похідна суми функцій є сума похідних функцій, тобто.

З таблиці похідних з'ясовуємо, що похідна "ікса" дорівнює одиниці, а похідна синуса - косінус. Підставляємо ці значення у суму похідних і знаходимо необхідну умовою завдання похідну:

приклад 2.Знайти похідну функції

Рішення. Диференціюємо як похідну суми, в якій другий доданок з постійним множником, його можна винести за знак похідної:

Якщо поки що виникають питання, звідки береться, вони, як правило, прояснюються після ознайомлення з таблицею похідних та найпростішими правилами диференціювання. До них ми і переходимо зараз.

Таблиця похідних простих функцій

1. Похідна константи (числа). Будь-якого числа (1, 2, 5, 200 ...), яке є у виразі функції. Завжди дорівнює нулю. Це дуже важливо пам'ятати, тому що потрібно дуже часто
2. Похідна незалежною змінною. Найчастіше "ікса". Завжди дорівнює одиниці. Це також важливо запам'ятати надовго
3. Похідна ступеня. У ступінь під час вирішення завдань необхідно перетворювати неквадратні коріння.
4. Похідна змінної у ступені -1
5. Похідна квадратного кореня
6. Похідна синуса
7. Похідна косинуса
8. Похідна тангенса
9. Похідна котангенсу
10. Похідна арксинусу
11. Похідна арккосинусу
12. Похідна арктангенса
13. Похідна арккотангенса
14. Похідна натурального логарифму
15. Похідна логарифмічна функція
16. Похідна експоненти
17. Похідна показової функції

Правила диференціювання

1. Похідна суми чи різниці
2. Похідна твори
2a. Похідна вирази, помноженого на постійний множник
3. Похідна приватного
4. Похідна складної функції

Правило 1.Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовані і функції

причому

тобто. похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій.

Слідство. Якщо дві функції, що диференціюються, відрізняються на постійний доданок, то їх похідні рівні, тобто.

Правило 2Якщо функції

диференційовані в деякій точці, то в тій же точці диференційовано та їх добуток

причому

тобто. похідна твори двох функцій дорівнює сумі творів кожної з цих функцій похідну інший.

Наслідок 1. Постійний множник можна виносити за знак похідної:

Наслідок 2. Похідна твори декількох функцій, що диференціюються, дорівнює сумі творів похідної кожного з співмножників на всі інші.

Наприклад, для трьох множників:

Правило 3Якщо функції

диференційовані в деякій точці і , то в цій точці диференційовано та їх приватнеu/v , причому

тобто. похідна приватного двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника.

Де що шукати на інших сторінках

При знаходженні похідної твори і частки у реальних завданнях завжди потрібно застосовувати відразу кілька правил диференціювання, тому більше прикладів на ці похідні - у статті"Виробничі твори та приватні функції".

Зауваження.Слід не плутати константу (тобто число) як доданок у сумі і як постійний множник! У разі доданку її похідна дорівнює нулю, а разі постійного множника вона виноситься за знак похідних. Це типова помилка, яка зустрічається на початковому етапі вивчення похідних, але в міру вирішення вже кількох одно-двоскладових прикладів середній студент цієї помилки вже не робить.

А якщо при диференціюванні твору чи приватного у вас з'явився доданок u"v, в котрому u- число, наприклад, 2 або 5, тобто константа, то похідна цього числа дорівнюватиме нулю і, отже, все доданок буде дорівнює нулю (такий випадок розібраний у прикладі 10).

Інша часта помилка - механічне рішення похідної складної функції як похідної простий функції. Тому похідної складної функціїприсвячено окрему статтю. Але спочатку вчитимемося знаходити похідні простих функцій.

По ходу не обійтися без перетворень виразів. Для цього може знадобитися відкрити у нових вікнах посібники Дії зі ступенями та коріннямі Дії з дробами .

Якщо Ви шукаєте рішення похідних дробів зі ступенями та корінням, тобто, коли функція має вигляд начебто , то слідуйте на заняття "Похідна суми дробів зі ступенями та корінням".

Якщо ж перед Вами завдання начебто , то Вам на заняття "Виробні простих тригонометричних функцій".

Покрокові приклади - як знайти похідну

приклад 3.Знайти похідну функції

Рішення. Визначаємо частини виразу функції: весь вираз представляє твір, яке співмножники - суми, у другий у тому числі одне з доданків містить постійний множник. Застосовуємо правило диференціювання твору: похідна твори двох функцій дорівнює сумі творів кожної з цих функцій на похідну інший:

Далі застосовуємо правило диференціювання суми: похідна суми алгебраїчної функцій дорівнює сумі алгебри похідних цих функцій. У нашому випадку в кожній сумі другий доданок зі знаком мінус. У кожній сумі бачимо і незалежну змінну, похідна якої дорівнює одиниці, і константу (число), похідна якої дорівнює нулю. Отже, "ікс" у нас перетворюється на одиницю, а мінус 5 - на нуль. У другому виразі "ікс" помножено на 2, так що двійку множимо на ту ж одиницю як похідну "ікса". Отримуємо такі значення похідних:

Підставляємо знайдені похідні у суму творів і отримуємо необхідну умовою завдання похідну всієї функції:

А перевірити розв'язання задачі на похідну можна на .

приклад 4.Знайти похідну функції

Рішення. Від нас потрібно знайти похідну приватного. Застосовуємо формулу диференціювання частки: похідна частки двох функцій дорівнює дробу, чисельник якого є різниця творів знаменника на похідну чисельника і чисельника на похідну знаменника, а знаменник є квадрат колишнього чисельника. Отримуємо:

Похідну співмножників у чисельнику ми вже знайшли в прикладі 2. Не забудемо також, що твір, що є другим співмножником у чисельнику в поточному прикладі береться зі знаком мінус:

Якщо Ви шукаєте вирішення таких завдань, в яких треба знайти похідну функції, де суцільне нагромадження коренів та ступенів, як, наприклад, , то ласкаво просимо на заняття "Виробна суми дробів зі ступенями і корінням" .

Якщо ж Вам потрібно дізнатися більше про похідні синуси, косінуси, тангенси та інші тригонометричних функцій, тобто, коли функція має вигляд начебто , то Вам на урок "Виробні простих тригонометричних функцій" .

Приклад 5.Знайти похідну функції

Рішення. У цій функції бачимо твір, один із співмножників яких - квадратний корінь із незалежної змінної, з похідною якого ми ознайомились у таблиці похідних. За правилом диференціювання твору та табличного значення похідної квадратного кореня отримуємо:

Перевірити рішення задачі на похідну можна на калькуляторі похідних онлайн .

Приклад 6.Знайти похідну функції

Рішення. У цій функції бачимо приватне, ділене якого - квадратний корінь із незалежної змінної. За правилом диференціювання приватного, яке ми повторили і застосували в прикладі 4, та табличного значення похідної квадратного кореня отримуємо:

Щоб позбутися дробу в чисельнику, множимо чисельник і знаменник на .


Навігація на сторінці.

Похідна постійною.

При виведенні першої формули таблиці виходити з визначення похідної функції у точці. Візьмемо , де x – будь-яке дійсне число, тобто, x – будь-яке число з області визначення функції . Запишемо межу відношення збільшення функції до збільшення аргументу при:

Слід зазначити, що під знаком межі виходить вираз , який є , оскільки у чисельнику перебуває не нескінченно мала величина, саме нуль. Іншими словами, збільшення постійної функції завжди дорівнює нулю.

Таким чином, похідна постійної функції дорівнює нулю по всій області визначення.

приклад.

Знайти похідні наступних постійних функцій

Рішення.

У першому випадку ми маємо похідну натурального числа 3, у другому випадку нам доводиться брати похідну від параметра а, який може бути будь-яким дійсним числом, у третьому - похідну ірраціонального числа , у четвертому випадку маємо похідну нуля (нуль є цілим числом), у п'ятому - похідну раціонального дробу .

Відповідь:

Похідні всіх цих функцій дорівнюють нулю для будь-якого дійсного x (на всій області визначення)

Похідна статечної функції.

Формула похідної статечної функціїмає вигляд де показник ступеня p – будь-яке дійсне число.

Доведемо спочатку формулу для натурального показникаступеня, тобто для p = 1, 2, 3, …

Будемо користуватися визначенням похідної. Запишемо межу відношення збільшення статечної функції до збільшення аргументу:

Для спрощення виразу в чисельнику звернемося до формули:

Отже,

Цим доведено формулу похідної статечної функції для натурального показника.

Слід розглянути два випадки: при позитивних x та негативних x .

Спочатку будемо вважати. В цьому випадку . Виконаємо логарифмування рівності на основі e і застосуємо властивість логарифму:

Прийшли до явно заданої функції. Знаходимо її похідну:

Залишилося провести доказ для негативних x.

Коли показник p є парне число, то статечна функція визначена і при , причому є парною (дивіться розділ ). Тобто, . У цьому випадку також можна використовувати доказ через логарифмічну похідну.

Коли показник p є непарне число, то статечна функція визначена і при , причому є непарною. Тобто, . У цьому випадку логарифмічну похідну використовувати не можна. Для доказу формули у цьому випадку можна скористатися правилами диференціювання та правилом знаходження похідної складної функції:

Останній перехід можливий через те, що якщо p - непарне число, то p-1 або парне число, або нуль (при p=1 ), тому, для негативних x справедлива рівність .

Таким чином, формула похідної статечної функції доведена для будь-якого дійсного p .

приклад.

Знайти похідні функції.

Рішення.

Першу і третю функцію наведемо до табличного виду, використовуючи властивості ступеня, і застосуємо формулу похідної статечної функції:

Похідна показової функції.

Висновок формули похідної наведемо на основі визначення:

Прийшли до невизначеності. Для її розкриття введемо нову змінну, причому при. Тоді. В останньому переході ми використали формулу переходу до нової основи логарифму.

Виконаємо підстановку у вихідну межу:

За визначенням похідної для функції синуса маємо .

Скористаємося формулою різниці синусів:

Залишилося звернутися до першої чудової межі:

Таким чином, похідна функції sin x є cos x.

Абсолютно аналогічно доводиться формула похідної косинуса.


При вирішенні завдань диференціювання ми постійно звертатимемося до таблиці похідних основних функцій, інакше навіщо ми її становили і доводили кожну формулу. Рекомендуємо запам'ятати всі ці формули, надалі це заощадить Вам багато часу.

Copyright by cleverstudents

Всі права захищені.
Охороняється законом про авторське право. Жодну частину сайту, включаючи внутрішні матеріали та зовнішнє оформлення, не можна відтворювати у будь-якій формі або використовувати без попереднього письмового дозволу правовласника.

Обчислення похідної- Одна з найважливіших операцій у диференціальному обчисленні. Нижче наведено таблицю знаходження похідних простих функцій. Більш складні правила диференціювання дивіться у інших уроках:
  • Таблиця похідних експоненційних та логарифмічних функцій
Використовуйте наведені формули як довідкові значення. Вони допоможуть у вирішенні диференціальних рівнянь та завдань. На малюнку, в таблиці похідних простих функцій, наведена "шпаргалка" основних випадків знаходження похідної у зрозумілому для застосування вигляді, поряд з ним дано пояснення для кожного випадку.

Похідні простих функцій

1. Похідна від числа дорівнює нулю
с = 0
Приклад:
5 '= 0

Пояснення:
Похідна показує швидкість зміни значення функції за зміни аргументу. Оскільки число ніяк не змінюється за жодних умов - швидкість його зміни завжди дорівнює нулю.

2. Похідна змінноїдорівнює одиниці
x' = 1

Пояснення:
При кожному збільшенні аргументу (х) на одиницю значення функції (результату обчислень) збільшується на цю саму величину. Таким чином, швидкість зміни значення функції y = x точно дорівнює швидкості зміни значення аргументу.

3. Похідна змінної та множника дорівнює цьому множнику
сx' = с
Приклад:
(3x)' = 3
(2x)' = 2
Пояснення:
В даному випадку, при кожній зміні аргументу функції ( х) її значення (y) зростає в зразів. Таким чином, швидкість зміни значення функції по відношенню до швидкості зміни аргументу точно дорівнює величині з.

Звідки випливає, що
(cx + b)" = c
тобто диференціал лінійної функції y=kx+b дорівнює кутовому коефіцієнту нахилу прямої (k).


4. Похідна змінною за модулемдорівнює частці цієї змінної до її модуля
|x|"= x / | x | за умови, що х ≠ 0
Пояснення:
Оскільки похідна змінної (див. формулу 2) дорівнює одиниці, похідна модуля відрізняється лише тим, що значення швидкості зміни функції змінюється на протилежне при перетині точки початку координат (спробуйте намалювати графік функції y = | x | і переконайтеся в цьому самі. Саме таке значення і повертає вираз x/|x|.< 0 оно равно (-1), а когда x >0 – одиниці. Тобто при негативних значеннях змінної х при кожному збільшенні зміні аргументу значення функції зменшується на таке саме значення, а при позитивних - навпаки, зростає, але точно на таке ж значення.

5. Похідна змінної у ступенідорівнює добутку числа цього ступеня та змінної до ступеня, зменшеної на одиницю
(x c)" = cx c-1, за умови, що x c і сx c-1 визначені а з ≠ 0
Приклад:
(x 2)" = 2x
(x 3)" = 3x 2
Для запам'ятовування формули:
Знесіть ступінь змінної "вниз" як множник, а потім зменшіть самий ступінь на одиницю. Наприклад, для x 2 - двійка виявилася попереду ікса, та був зменшена ступінь (2-1=1) просто дала нам 2х. Те саме сталося для x 3 - трійку "спускаємо вниз", зменшуємо її на одиницю і замість куба маємо квадрат, тобто 3x2. Трохи “не науково”, але дуже просто запам'ятати.

6.Похідна дроби 1/х
(1/х)" = - 1 / x 2
Приклад:
Оскільки дріб можна подати як зведення в негативний ступінь
(1/x)" = (x -1)" , Тоді можна застосувати формулу з правила 5 похідних таблиці
(x -1)" = -1x -2 = - 1 / х 2

7. Похідна дроби зі змінним довільним ступенему знаменнику
(1 / x c)" = - c/x c+1
Приклад:
(1/x2)" = - 2/x3

8. Похідне коріння(Похідна змінної під квадратним коренем)
(√x)" = 1 / (2√x)або 1/2 х -1/2
Приклад:
(√x)" = (х 1/2)" означає можна застосувати формулу з правила 5
(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

9. Похідна змінної під коренем довільного ступеня
(n√x)" = 1 / (nn√xn-1)

Визначення похідної функції є зворотна операція інтегрування функції. Для елементарних функцій обчислити похідну нескладно, досить скористатися таблицею похідних. Якщо ж нам потрібно знайти похіднувід складної функції, то диференціювання буде вже набагато складніше, вимагатиме більшої уваги і часу. При цьому дуже легко припуститися описки або незначної помилки, яка призведе до остаточної невірної відповіді. Тому завжди важливо мати можливість перевірити своє рішення. Це ви можете зробити за допомогою цього онлайн-калькулятора, який дозволяє знаходити похідні від будь-яких функцій онлайн з докладним рішенням безкоштовно, без реєстрації на сайті. Знаходження похідної функції (диференціювання) це відношення збільшення функції до збільшення аргументу (чисельно похідна дорівнює тангенсу кута нахилу дотичної до графіка функції). Якщо необхідно обчислити похідну від функції у конкретній точці, потрібно в отриманій відповіді замість аргументу xпідставити його чисельне значення та розрахувати вираз. При рішенні похідної онлайнвам необхідно ввести функцію у відповідне поле: при цьому аргументом має бути змінна xоскільки диференціювання йде саме по ньому. Для обчислення другої похідної потрібно продиференціювати отриману відповідь.